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Summary: Predictive models for urban air temperature (Tair) were developed by using urban land surface 
temperature (LST) retrieved from Landsat-8 and MODIS data, NDVI retrieved from Landsat-8 data and Tair 
measured by 24 climatological stations in Szeged. The investigation focused on summer period (June−September) 
during 2016−2019 in Szeged. The relationship between Tair and LST was analyzed by calculating Pearson correlation 
coefficient, root-mean-square error and mean-absolute error using the data of 2017−2019, then unary (LST) and 
binary (LST and NDVI) linear regression models were developed for estimating Tair. The data in 2016 were used to 
validate the accuracy of the models. Correlation analysis indicated that there were strong correlations during the 
nighttime and relatively weaker ones during the daytime. The errors between Tair and LSTMODIS-Night was the smallest, 
followed by LSTMODIS-Day and LSTLandsat-8 respectively. The validation results showed that all models could perform 
well, especially during nighttime with an error of less than 1.5℃. However, the addition of NDVI into the linear 
regression models did not significantly improve the accuracy of the models, and even had a negative effect. Finally, 
the influencing factors and temporal and spatial variability of the correlation between Tair and LST were analyzed. 
LSTLandsat-8 had a larger original error with Tair, but the regression model based on Landsat-8 had a stronger ability 
to reduce errors. 
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1. INTRODUCTION 

Urbanization is characterized by extensive land use transformation and altered surface 
thermal characteristics (Kalnay and Cai 2003, Shiflet et al. 2017). By changing the material 
and energy flows, urbanization has transformed the natural ecosystem to a coupled human 
and natural system, which inevitably has resulted in various effects on the eco-environment, 
including effects on the urban thermal environment, especially in urban regions having 
intensive population and high building density (Peng et al. 2016). One representative effect 
on the urban thermal environment is the appearance of urban heat island (UHI), a 
phenomenon where urban areas experience a higher temperature relative to their rural 
surroundings, especially at night (Oke 1987). There are two main approaches to quantify UHI 
including measurement of air temperature (Tair) in the canopy layer and land surface 
temperature (LST) (Schwarz et al. 2011, Sheng et al. 2017). 

Due to the respective characteristics of these two types of temperature, the most 
common data sources used in studies on Tair and LST differ substantially (Oke et al. 2017, 
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Schwarz et al. 2012). For Tair collection, field measurements are generally used including 
fixed and mobile meteorological stations (Li et al. 2020, Unger et al. 2009). However, the 
limitation of number and uneven distribution of meteorological stations are serious 
shortcomings for Tair measurement in most urban areas, especially the lack of observations 
in densely built-up areas where the UHI effect is the strongest (Ho et al. 2016, Sheng et al. 
2017); as for mobile measurement, in addition to the above problems, the accuracy of 
measurement is affected by the observation methodological design and route selection (Zhou 
et al. 2019). For LST data collection, the most common method is retrieving from satellite 
data (Tsou et al. 2017). Besides, infrared aircraft and camera are also used in some researches 
at local or street scale (Kelly et al. 1992, Unger et al. 2010). However, shortcomings still 
exist in these remote methods, such as limitation by weather conditions and observation 
frequency (Yang et al. 2020). 

The interaction and correlation between urban Tair and LST have been proven in many 
studies (Roth et al. 1989, Schwarz et al. 2012), but it is worth noting that there are large 
differences between these two temperatures as a result of a high degree of spatial 
heterogeneity in thermal characteristics associated with urbanization (Prihodko and Goward 
1997, Oke et al. 2017). In many studies on estimation of Tair based on remote sensing data, 
the Tair samples are scarce due to the lack of stations, and most of them are located in the 
suburbs far from the city centre, which cannot reflect the intra-urban air thermal environment 
exactly (Sheng et al. 2017, Pelta et al. 2016). 

In our investigation, 24 meteorological stations, which were installed based on LCZs 
(Stewart and Oke 2012) and can represent all types of urban land covers in Szeged, were used 
to measure Tair (Unger et al. 2014). The objectives of our study are: (1) to analyse the 
connection between Tair and LST by using data from 2017 to 2019 and develop unary 
regression models for estimating Tair based on LST; (2) to validate the performance of the 
regression models by using data in 2016; (3) to add Normalised Difference Vegetation Index 
(NDVI) as the second independent variable to the regression models to develop binary 
regression models for Tair estimation and analyse the impact of NDVI on Tair; (4) to analyse 
the influencing factors on the relationship between Tair and LST. 

2. MATERIAL AND METHODS 

2.1. Study area 

We carried out our investigation in Szeged (46.3°N, 20.1°E), which is the largest city 
with a population of 162 000 in the southern region of the Great Hungarian Plain. The study 
area is a large flood plain and about 79 m above sea level. Tisza River passes through the 
city, but it is relatively narrow and its influence is negligible (Unger et al. 2001). This area is 
in Köppen's climatic region Cfa (Unger et al. 2020) with an annual mean temperature of 
11.9°C, an amount of yearly precipitation of 508 mm, sunshine duration of 2049 hours and 
frequent drought (Harris et al. 2014). The study area covers a 10 km × 8 km rectangle in and 
around Szeged (Fig. 1). 

2.2. Satellite data 

In our study, LST were retrieved from Landsat-8 and MODIS. Our investigation 
focused on one season period from June to September during 4 years (2016–2019). 
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According to the weather condition, we selected 13 cloud free days to collect temperature 
data in Szeged region. Both Landsat-8 and MODIS are avaliable in these 13 days. However, 
the data in some pixels of satellite images, especially at night, and some Tair obtained from 
meteorological stations are missing. After pairing LST with Tair, we got the final temperature 
data pairs (Table 1). 

 
Fig. 1  Geographical location of Szeged and LCZs map of the study area with station sites of the 

urban meteorological network (marked by green crosses and digits referring to the zones) (Unger et 
al. 2018). For the explanation of LCZ classes see Stewart and Oke (2012). 

Table 1 Information about the satellite data 

Data source Resolution Observation time (UTC) 
Amount of pairs of Tair and LST 

2016 2017−2019 
LST-Landsat-8 100 m 9:27 91 167 

LST-MODIS-day 1000 m 10:54, 12:36 181 325 
LST-MODIS-night 1000 m 1:30, 20:24 160 179 
NDVI-Landsat-8 30 m 9:27 91 167 
 

All processing and calculations of satellite data were carried out in Google Earth 
Engine (GEE) platform. GEE is a cloud computing platform designed to store and process 
huge data sets (at petabyte-scale) for analysis and ultimate decision making (Kumar and 
Mutanga 2018). Following the free availability of Landsat series in 2008, Google archived 
all the data sets and linked them to the cloud computing engine for open source use. The 
current archive of data includes those from other satellites, as well as Geographic Information 
Systems (GIS) based vector data sets, social, demographic, weather, digital elevation models, 
and climate data layers (Mutanga and Kumar 2019). The LST retrieval process was 
performed in the background on the Google cloud computing servers, with direct access to 
the GEE satellite data catalogue. Therefore, the application needs only a few seconds to 
produce Landsat-8 LST with no need for any computational resources from the user 
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(Parastatidis et al. 2017). In our investigation, the applications of GEE include LST retrieval 
from Landsat-8 and MODIS datasets, calculation of Normalized Difference Vegetation Index 
(NDVI) with Landsat-8 data and distance-weighted average calculation of LST and NDVI. 
All of the images were projected to UTM zone 34N and keep their original resolution. 

(1) NDVI 

NDVI image shows the vegetation extent of the area by analysing near-infrared and 
red spectral band data. NDVI is the index of photosynthetic activity in plant and it is the most 
commonly used vegetation spectral indices for crop growth monitoring (Pirotti et al. 2014). 
In this research, the purposes of calculating NDVI are: (1) to calculate the land surface 
emissivity (τ) for LST retrieval from Landsat-8 (Molnár 2016); (2) to create the binary 
regression model for Tair estimate. As the resolution of Landsat-8 (30 m) is higher than 
MODIS (250 m – 1 km), NDVI was calculated with Landsat-8 data according to the 
following equation (Tucker 1979): 

NDVI=
b5–b4

b5+b4
 

where b5 is the reflectance of near-infrared band and b4 is the reflectance of red band in 
Landsat-8 dataset. 

(2) LST retrieval from satellite data 

The Radiative Transfer Equation method was used to retrieve LST from Landsat-8 
data. In this method, the main task is removing the atmospheric attenuation effects and 
calculation of land surface emissivity (Yu et al. 2014). The atmospheric profile was extracted 
from NASA’s Atmospheric Correction Parameter Calculator (Barsi et al. 2003), which uses 
the National Centres for Environmental Prediction modeled atmospheric global profiles for 
a particular date, time and location as input. Then, the Moderate Resolution Atmospheric 
Transmission model was used to simulate atmospheric transmittance, upwelling and 
downwelling. The whole process can be expressed as the following equations: 

Lλ=�εB�TS�+�1-ε�L
↓
�τ+L

↑

 

B�Ts�=
�Lλ–L

↑

–τ�1–ε�L
↓
�

τε
 

where Lλ is the at-sensor radiance, L↑ is the upwelling atmospheric radiance, L↓ is the 
downwelling atmospheric radiance in Wm-2sr-1μm-1, τ is the total atmospheric transmissivity 
between the surface and the sensor, and ε is the land surface emissivity, which can be 
calculated based on NDVI (Qin et al. 2004, Sobrino et al. 2004), B (Ts) is the radiance of a 
blackbody target of kinetic temperature Ts in Wm-2sr-1μm-1. Then an inversion of Planck’s 
Law was applied to derive the kinetic skin temperature using the following equation: 

Ts=
K2

ln
K1

B(Ts)+1

 

where K1 and K2 are the thermal band calibration constants found in the Landsat-8 metadata 
files (K1=774.89，K2=1321.08).  
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As for MODIS data, the daily LST and Emissivity products were used over Szeged. 
The version-5 products from 2016 to 2019 were collected for this study, which are 
abbreviated as MOD11A1 and MYD11A1 and have a spatial resolution of approximately 1 
km (Sun et al. 2015, Wan 2008). MODIS data were collected by both the Terra and Aqua 
Sun-synchronous satellites. Terra passes the equator from north to south (descending node) 
at approximately 10:30 a.m. and Aqua passes the equator from south to north (ascending 
node) at approximately 1:30 p.m. local time. The land-surface thermal radiation can be 
obtained at least four times each day in our study area. Nevertheless, there are some areas 
without LST data in MODIS images, especially at night, so the final daytime data is twice 
the night-time data. The details of NDVI and both LSTs from Landsat-8 and MODIS are 
shown in Table 1. 

 
Fig. 2  Examples of spatial patterns of LST and NDVI: (a) and (c) LST and NDVI from Landsat-8, 
2017-06-24, 9:27 (UTC), respectively; (e−h) LST from MODIS MOD11A1 and MYD11A1, 2016-
07-07, 1:30, 10:54, 12:36 and 20:24 (UTC), respectively; (b) and (d) distance-weighted average of 

LST and NDVI, respectively 

(3) Distance-weighted average 

MODIS and Landsat-8 images have different spatial resolutions. Therefore, to be 
comparable and usable in statistical analysis, the distance-weighted spatial average of NDVI 
and LSTLandsat-8 was calculated. As shown in Figs. 2b and d, the value in each pixel is the 
distance-weighted average of all pixel in a 1 km square centered this pixel (Unger et al. 2009). 
Considering that the Tair is affected by LST and air turbulence and these influence factors on 
Tair at 4 m height may extend over a local scale, hence it is reasonable to choose the range of 
1 km to calculate the spatial average LST. This calculation process was carried out in GEE. 
As for the MODIS data, we used the original value (Fig. 2). 
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2.3. Tair data collection 

Tair data were obtained from a meteorological monitoring network in Szeged. This 
monitoring network was established in Szeged within the framework of an EU project 
(URBAN-PATH 2016, urban-path.hu). 24 stations were installed to measure Tair and relative 
humidity every 10 minutes. The locations of the stations were selected based on the 
distribution of LCZs in Szeged (Lelovics et al. 2014, Unger et al. 2018). All of stations have 
to be representative of the LCZs within the city and spatial pattern of the network has to be 
capable of revealing the spatial structure of the UHI (Unger et al. 2015). The accuracy of the 
thermal sensors is 0.4°C. The consoles are mounted on lamp posts at the height of 4 m above 
the ground for security reasons. As the air in the urban canyon is well-mixed, the temperature 
measured at this height is representative of the lower air layers (Nakamura and Oke 1988, 
Unger et al. 2014). When we paired Tair with LST, if their observation time was not exactly 
synchronous, we chose the closest Tair to the LST with the temporal interval of less than five 
minutes (Gál et al. 2016). 

2.4. Methods of statistical analysis 

Statistical analysis was performed by SPSS 25.0 and Microsoft Excel 2019. 
Correlation, error and regression analysis were employed in this study. Pearson correlation 
coefficient (r) was computed to evaluate the correlation between LST and Tair. Root-mean-
square error (RMSE) and mean-absolute error (MAE) were computed to quantitatively 
evaluate the difference between LST and Tair. Then, linear regression models were created to 
estimate Tair based on LST and NDVI during 2017−2019. Finally, the Tair, LST and NDVI 
data in 2016 were used to validate the performance of these models. For this validation, the 
RMSE and MAE between estimated Tair and measured Tair were calculated and compared 
(Janssen and Heuberger 1995, Hrisko et al. 2020). The unary and binary regression models 
are shown as the following equations: 

Tair=a∙LST+e 

Tair=a∙LST+b∙NDVI+e 

3. RESULTS 

3.1. Connection and error analysis between Tair and LST 

Relationships between Tair and LST over 9-day periods from 2017 to 2019 were 
calculated using 671 data pairs (Fig. 3). As error analyse (RMSE and MAE) shows (Fig. 3 
a−c), errors between Tair and LSTLandsat-8 were largest with an RMSE of 6.1℃ and an MAE 
of 5.6℃, and the errors between Tair and LSTMODIS-Day were relatively smaller with an RMSE 
of 4.2℃ and an MAE of 3.6℃, the smallest errors (RMSE=2.3℃ and MAE=2.0℃) appear 
at night when LSTMODIS-Night were used to compare with Tair. In Pearson’s correlation analysis, 
the stronger connection between Tair and LST appears at night (LSTMODIS-Night, r=0.97, 
P<0.01) compared with LSTLandsat-8 (r=0.89, P<0.01) and LSTMODIS-Day (r=0.89, P<0.01). In 
general, the difference between Tair and LST varies from day to night; Tair has a stronger 
connection and smaller errors with LST at night. When the influence of solar radiation ceases, 
the energy exchange between air and surface tends to be stable at night; the difference 
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between Tair and LST decreases and the correlation increases significantly, which is the same 
as the results of previous studies (e.g. Sun et al. 2015). LSTMODIS-Day has the same connection 
but smaller errors with Tair compared with LSTLandsat-8, which may be caused by the inherent 
differences between these two data sources and their different observation time. 

 
Fig. 3 (a), (b) and (c): Results of regression, correlation and error analysis between Tair and 

LSTLandsat-8, LSTMODIS-Day and LSTMODIS-Night, respectively, from 2017 to 2019; (d): The error analysis 
between observed Tair and estimated Tair in 2016 

3.2. Development and validation of regression models 

The differences between Tair and LST are obvious and unignored, despite their 
moderate to high correlation. So we trained regression models based on Tair and LST data 
during 2017−2019 to estimate Tair (Fig. 3a−c). The results showed that the value of R2 was 
0.79 (P<0.01) when LSTLandsat-8 and LSTMODIS-Day were used in models, which means 79% of 
the variation of Tair can be explained by the LST. In addition, the night-time model, with a 
higher R2 of 0.97 (P<0.01), can perform better than that during daytime, which means almost 
all of the variation of Tair can be explained by the LST. Then, these regression equations were 
validated by using the LST data in 2016. We estimated Tair basing on LSTLandsat-8 and 
LSTMODIS in 2016 and calculated the RMSE and MAE between real Tair and estimated Tair 
(Fig. 3d). The results indicated that all models could reduce the error to less than 2.5℃, 
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especially when LSTMODIS-Night were used in the model with an RMSE of 1.3℃ and MAE of 
1.0℃, which means that Tair can be accurately estimated using only LST at night. 

 
Fig. 4  (a) Average of LST, Tair and the difference between LST and Tair (ΔT) at 5 observation time 

(9:30, 11:00, 12:40, 20:40 and 1:30); (b) The difference between original errors and estimated errors; 
(c) and (d): Mean value of Tair, LST and temperature difference (ΔT) between Tair and LST by LCZs 

during daytime and nighttime, respectively 

In consideration of the effect of vegetation on the urban thermal environment (Shiflett 
et al. 2017), we tried to add NDVI into the regression models to develope binary regression 
models. The coefficients of determination (R²) of models based on LSTLandsat-8, LSTMODIS-Day 
and LSTMODIS-Night were 0.80, 0.80 and 0.95 (P <0.01), respectively, which means that these 
models can effectively estimate Tair. In order to compared with unary regression models, we 
calculated the RMSE and MAE between observed Tair and estimated Tair based on both 
models without and with NDVI (Fig. 3d). Unexpectedly, we saw a slight increase in errors 
when binary regression models were used, only RMSEMODIS-Night and MAEMODIS-Day 
decreased from 1.3℃ to 1.2℃ and from 2.0℃ to 1.9℃, respectively. This results indicate 
that the role of urban vegetation may not be important for estimating Tair. 
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4. DISCUSSION 

4.1 Comparison of Landsat-8 and MODIS 

The results of Section 3.1 showed that Tair had the same connection with LSTLandsat-8 
as with LSTMODIS-Day. However, it should be noted that errors between Tair and LSTLandsat-8 are 
obviously higher than errors between Tair and LSTMODIS, which is mainly the result of high 
LSTLandsat-8. We calculated the average of LST, Tair and the difference between LST and Tair 
(ΔT) at 5 observation time (9:30, 11:00, 12:40, 20:40 and 1:30, Fig. 4a). When Landsat-8 
was used to retrieve LST (9:30), the average LSTLandsat-8 was relatively higher than the 
average LSTMODIS at 11:00, which was inconsistent with the fluctuation of Tair. This 
differential can be explained by the inherent error between Landsat-8 data and MODIS data, 
which caused the highest ΔT, RMSE and MAE at 9:30. 

We also compared the performance of regression models based on LSTLandat-8, 
LSTMODIS-Day and LSTMODIS-Night by calculating ΔRMSE and ΔMAE (Fig. 4b). We found that 
the model based on LSTLandsat-8 could reduce the errors by nearly 4℃, which was the largest 
among these three values presented. Furthermore, the errors based on LSTLandsat-8 were 
smaller than that based on LSTMODIS-Day after regression calculating (Fig. 3d), indicating that 
Landsat-8 data can perform better than MODIS-Day data in Tair estimation. On the one hand, 
the larger difference between LSTLandsat-8 and Tair caused the possibility of larger ΔRMSE and 
ΔMAE; on the other hand, the climatological stations were not accurately located in the 
center of each pixel as a result of the wide pixel range of MODIS images, which caused a 
spatial error between Tair and LSTMODIS. This spatial error likely caused the differential of 
performance of estimation models based on MODIS-Day and Landsat-8 data. 

4.2 Spatio-temporal variability of Tair and LST 

As mentioned in Section 2, all 24 climatological stations are located in specific LCZs 
which are distinguished based on the characteristics of land surface (Lelovics et al. 2014, 
Unger et al. 2018). We calculated the mean value of Tair, LST and temperature difference 
(ΔT) between Tair and LST in each specific LCZ. As shown in Fig. 4c and 4d, the difference 
of LSTs among these LCZs were distinct, which indicated that the spatial variability of LST 
was greater than Tair during daytime. According to Oke et al. (2017), the variability in 
geometric, radiative, thermal, moisture and aerodynamic properties of urban surface underlie 
the greater spatial variability of LST compared to Tair, particularly during daytime. At that 
time, the most dominant surfaces with relatively high LST are roads, residential and industrial 
areas, etc. which are covered by artificial pavements, such as LCZs 2, 3 and 8. These areas 
are characterized by higher thermal conductivity and heat capacity, and in addition, there is 
less evaporative cooling effect over these surfaces. The influencing factors on Tair are 
different from the ones on LST. Tair is mainly affected by radiation, conduction and 
convection. During daytime, Tair is characterized by relatively high homogeneity as a result 
of country breeze and local airflow (Beranová and Huth 2005), which usually causes UHI to 
decline or even disappear. At night, Tair has a similar spatial variability to LST when country 
breeze and local airflow weaken and longwave radiation of surface dominates. Because of 
the spatial variability of Tair and LST, the spatial variability of ΔT is also obvious. 
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5. CONCLUSIONS 

This study utilized Landsat-8 data and MODIS data to retrieve urban land surface 
temperature (LST) and measured urban air temperature (Tair) by 24 climatological stations in 
the period of 2016−2019 in Szeged. We compared LST and Tair by using error and connection 
analysis, then we developed and validated regression equations for estimating Tair based on 
LST, NDVI and Tair. Finally, by calculating the mean of LST, Tair and their difference at 
specific observation time and LCZ, we analysed the influencing factors on the relationship 
between Tair and LST. Based on our research results, we conclude:  

(1) Tair and LST have a strong enough correlation during both day and night. The 
correlation at night is stronger (r=0.97) with lower errors (RMSE=2.3℃ and MAE=2.0℃) 
and better regression model performance (R²=0.95, P<0.01); 

(2) All regression models can effectively estimate Tair, especially at night. The errors 
can be reduced below 2.5℃ during the day and below 1.5℃ at night. NDVI cannot enhance 
the performance of the Tair prediction models. On the contrary, a slight weakening can be 
observed when NDVI was added in models; 

(3) The difference between LSTLandsat-8 and LSTMODIS is obvious in Tair estimation, 
which indicated that we should consider this difference when combining different satellite 
data. The difference in the temporal and spatial resolution of satellite imagery, as well as 
certain weather conditions, are limitations on the use of remote sensing data; 

(4) The relationship between LST and Tair has obvious spatial and temporal variability. 
LST is higher than Tair during daytime, and the opposite is true at night. The difference 
between Tair and LST is relatively high in LCZs 2, 3 and 8 with more artificial surfaces.  

Overall, in our study, 24 climatological stations distributed in 7 LCZs were used in 
and around urban area of Szeged, which is our advantage in Tair estimate compared with other 
studies. The models developed for estimating Tair make it possible to use LST as a substitute 
for Tair measurement in cities without enough climatological station. 

Acknowledgement: This paper was supported by Stipendium Hungaricum Programme founding by the Hungarian 
Government. 
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