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Summary: Urban areas are among those most endangered with the potential global climate changes. The studies 

concerning the impact of global changes on local climate of cities are of a high significance for the urban inhabitants' 

health and wellbeing. This paper is the final report of a project (Urban climate in Central European cities and global 
climate change) with the aim to raise the public awareness on those issues in five Central European cities: Szeged 

(Hungary), Brno (Czech Republic), Bratislava (Slovakia), Kraków (Poland) and Vienna (Austria). Within the 

project, complex data concerning local geomorphological features, land use and long-term climatological data were 
used to perform the climate modelling analyses using the model MUKLIMO_3 provided by the German Weather 

Service (DWD). 

Key words: urban climate, climate change, urban climate model, heat load 

1. INTRODUCTION 

Global climate changes affect the environment in global, regional and local scales. 

Urban climate is a local scale phenomenon but it has direct and significant impact on 54% of 

the total global population living in cities (data of 2014). The global urban population is 

expected to grow further, approximately 1.84% per year between 2015 and 2020, 1.63% per 

year between 2020 and 2025, and 1.44% per year between 2025 and 2030 (Urban population 

growth 2015). Parallel, the global mean surface temperature change for the period 2016–

2035 relative to 1986–2005 will likely be in the range of 0.3°C to 0.7°C, and relative to the 

average from year 1850 to 1900, global surface temperature change by the end of the 21st 

century is projected to likely exceed 1.5°C (IPCC 2013). Urban areas are among those most 

endangered with the potential global climate changes. The heat load in cities is supposed to 

get intensified as global temperature increase will be superimposed on air temperature 

modifications characteristic for urban areas, e.g. the Urban Heat Island (UHI) effect. Those 

phenomena might have far-reaching health effects (e.g. Baccini et al. 2008). Therefore, the 

                                                           
* This paper is the edited version of the final report of the Urban climate in Central European cities and global climate change project, submitted in 2015. 
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studies concerning the impact of global changes on local climate of cities are of a high 

significance for the urban inhabitants' health and wellbeing. In order to plan and undertake 

the mitigation actions in particular cities, it is necessary to recognize the possible range of 

heat load increase, in terms of both its magnitude and spatial extent. 

The present paper shows the prediction of urban heat load increase by 2100 in five 

Central European cities: Kraków (Poland), Bratislava (Slovakia), Brno (Czech Republic), 

Szeged (Hungary) and Vienna (Austria). The heat load is defined as the mean annual number 

of the summer days, i.e. days with maximum temperature ≥ 25°C. Numerous previous 

studies, completed for the cities mentioned, allowed to achieve the recognition of their 

present urban climate features (e.g. Unger et al. 2011, Unger et al. 2014, Dobrovolný et al. 

2012, Dobrovolný 2013, Lapin and Melo 2011, Auer et al. 1989, Böhm 1998, Walawender 

et al. 2014, Bokwa 2010a, 2010b, Bokwa et al. 2015). The cities are located in large river 

valleys and the diversified relief is an important local climate factor (except Szeged, located 

in flat area), even though the cities are not placed in the mountains. The historical urban 

infrastructure of Kraków, Bratislava, Brno and Szeged has been significantly modified first 

due to the destruction during the Second World War and then due to spatial development 

during the communistic times. For example, unlike in most cities located in USA or West 

Europe, areas with high buildings can be found in the suburbs, while city centres comprise 

of 2-3-storey historical buildings. Therefore, urban climate of the cities included in the study 

is an outcome of complex interactions between land use/land cover and land forms. The 

modelling approach used is designed to evaluate possible changes in urban heat load under 

future climate conditions, taking under consideration the role of the relief in controlling the 

urban climate which is a unique feature comparing to other similar tools available. The long-

perspective aim of the study is to compare the values and spatial extent of the expected heat 

load increase among the cities included in the study, find the factors controlling those patterns 

and provide the city planners with information which can be implemented in the future urban 

development plans. 

2. THE STUDY AREAS AND METHODS 

In the present study, the analyses were performed for five cities, located in Central 

Europe. The basic features of the cities are described in Table 1. 

Table 1  Basic data concerning the cities included in the study 

City (country) Area (km2) Altitude range (m a.s.l.) Population (year) 

Kraków (Poland) 327 145-459 761,870 (2014) 

Bratislava (Slovakia) 368 126-450 419,670 (2014) 

Brno (Czech Republic) 230 200-525 377,400 (2015) 
Szeged (Hungary) 281 46-143 162,500 (2015) 

Vienna (Austria) 414 141-581 1,812,600 (2015) 

 

Kraków is a city in southern Poland, on the river Vistula. The city is located in a 

concave landform, i.e. in the river valley passing from west to east. The historical city centre 

is placed on the bottom of the river Vistula valley (at about 200 m a.s.l.), on a limestone 

tectonic horst (Wawel Hill), emerging from the river valley. To the north of the river Vistula 

and the city centre is the Kraków-Częstochowa Upland, built of limestone and marls, and its 

parts located close to Kraków reach up to 300 m a.s.l. The southern borders of the city run 
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partially in the Carpathian Foothills, built of Flysch rocks, with an elevation up to 370 m a.s.l. 

in the area neighbouring Kraków. The river Vistula valley is narrow in the western part of 

Kraków (about 1 km) and widens to about 10 km in the eastern part. In the western part of 

the valley, there are several limestone tectonic horsts, reaching about 350 m a.s.l., so the city 

area is not surrounded by hills only from the east. The urbanized areas can be found in the 

river valley with its terraces and in convex landforms to the south and north of the city centre. 

Height differences between the valley floor and the hilltops next to the city borders are about 

100 m, and the built-up areas do not reach those hilltops. Within the city borders, built-up 

areas cover 43.0% of the area, while agricultural and semi-natural areas amount to 41.3%, 

and the remaining (green and water) areas cover 15.7%. In the valley floor, many different 

land use types can be distinguished, while in the convex landforms south and north of the 

valley, only a few land use types can be found (Bokwa et al. 2015). 

Bratislava is located in south-western Slovakia and it occupies both banks of the River 

Danube and the left bank of the River Morava. It is the country's largest city, situated only 

60 km from the Austrian capital Vienna. Bordering Austria and Hungary, it is the only 

national capital that borders two independent countries (Swire 2006). The city has a total area 

of 368 km2. The historic city center is located between the Danube and south-eastern slopes 

of the Carpathian mountain range – Malé Karpaty. Several city districts or boroughs are not 

directly connected to the historical center, but are located more separately and connected to 

Bratislava through narrow urban regions. The largest and most distinct borough of Bratislava 

situated on the right bank of Danube is Petržalka. Significant feature in the region of 

Bratislava is the mentioned Malé Karpaty mountain range in the northern and western parts 

of the city. Several city boroughs are found on both sides of the mountain ridge and are 

situated at foothill or directly on its slopes. The most of city districts are however located in 

the lowlands, to the east and southeast at Podunajská nížina lowland and to the northwest at 

Záhorská nížina lowland. The city's lowest point is at the Danube at 126 m a.s.l., and the 

highest point is Devínska Kobyla at 514 m. Complex orographic conditions in the Bratislava 

region generate a distinct and variable nature of the climate in the city and its surroundings. 

Especially the Malé Karpaty mountain range is affecting overall air circulation and thereby 

affecting most of climate characteristics in the city. 

Brno is situated in the south-eastern part of the Czech Republic and it is the second-

largest city in the country. Brno area is characterized by a basin position with complex terrain. 

Altitudes range from 190 m to 479 m, with the higher elevations lying largely in the western 

and northern parts of the region. Lower and flatter terrain is typical of the southern and eastern 

parts of the study area. There is a large water reservoir (area approximately 2.6 km2) located 

on the north-west border of the built-up part. The study area lies in one of the warmest and 

the driest regions in the Czech Republic. Mean annual temperature stands at 9.4°C, while 

mean annual precipitation is around 500 mm (1961–2000 reference period). 

Szeged is located in the Pannonian Plain in Central Europe. According to the climate 

classification system developed by Köppen, it belongs to temperate warm climate with a 

rather uniform annual distribution of precipitation (Kottek et al. 2006). The urbanized area 

covers only about 40 km2 of the city. The Tisza River is the axis of the town and the city has 

a regular avenue-boulevard structure. It is characterized by densely built up center, blocks of 

flats in the northern part, large area of family houses and warehouses mostly in western part 

(Unger 2004). In the study area, several database and input material is available from earlier 

studies, e.g. parameters used in the LCZ system and a set of other data (Rapid eye satellite 

images, CORINE land cover, road database, etc.) (Lelovics et al. 2014). 
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Kraków, grid size: 389×275×39 

 
Bratislava, grid size: 160×160×39 

 
Brno, grid size: 250×250×39 

 
Szeged, grid size: 213×181×25 

 
Vienna, grid size: 316×247×39 

Fig. 1  Land use/land cover for the cities studied and their surroundings,  

presented with the LCZ method 

Vienna is the capital city of Austria and the largest city used in this study. It is located 

at the easternmost extension of the Alps in a transition zone to the Pannonian Plain with the 

Danube River passing through the city. The City of Vienna covers an area of 41,487 ha from 

which 35.6% are buildings, 45.5% are green areas, 4.6% is water and 14.3% are traffic 

surfaces. The highest elevation is the Hermannskogel in Wienerwald (543 m) and the lowest 

point (151 m) is in the Lobau, east of the city center (Stadt Wien 2015). The urbanized area 

is characterized by the historical center surrounded by a green belt, dense built-up areas in 

the inner districts and low-density residential areas on the hillsides in the western part of the 
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city and in the flat terrain in the south and east direction. Most of the industrial areas are 

located in the eastern and southern part of the city.  

In each of the cities studied, the land use pattern is different. In order to obtain 

comparable data on land use/land cover for all the cities, the method of Local Climate Zones 

was used (see section 4.2). The results are presented in Fig. 1. 

Table 2 presents the share of particular LCZ classes in each city and its surroundings 

(i.e. in the domains shown in Fig. 1). It can be seen that some LCZ classes cannot be found 

or their share is very little in all cities: 1 (compact high-rise), 4 (open high-rise), 7 

(lightweight low-rise), B (scattered trees), G (water). There is no one single LCZ that would 

have a dominating share in all cities; on the contrary, the land use/land cover structure is 

different for each city. Additionally, Fig. 1 shows that the spatial pattern of particular LCZ is 

different in each city, i.e. there are no regular zones surrounding the urban core area but there 

is a mosaic of various LCZ types. 

Table 2  Share (%) of particular LCZ classes in the total area of the domain taken into analyses for 

each city studied 

City LCZ classes 

1 2 3 4 5 6 7 8 9 10 A B C D E F G 

Kraków - 0.6 0.2 - 6.5 2.9 0.0 1.8 14.4 0.6 8.3 8.1 - 50.1 0.3 5.2 1.0 

Bratislava - 0.7 2.8 - 13.0 6.2 - 5.2 15.4 24.1 4.7 - 20.9 1.4 2.9 2.6 - 

Brno - 0.6 7.4 - 4.3 5.0 1.4 3.3 6.8 32.6 20.7 - 6.7 3.2 7.6 0.4 - 
Szeged - 0.7 0.4 - 3.6 5.1 - 4.8 16.4 6.4 8.5 - 23.5 - 27.1 3.4 - 

Vienna - 2.1 2.6 - 8.8 8.5 0.2 10.6 11.4 0.6 21.9 7.2 0.7 12.7 0.1 9.9 2.6 

3. METEOROLOGICAL DATA 

Meteorological data were used in the study for several purposes. In each city, daily 

data from a rural and from an urban station were used, for a period of 30 years (1971–2000 

and 1981–2010), concerning air temperature, humidity and wind speed and direction. The 

stations are listed in Table 3. 

Table 3  Meteorological stations used in the study 

City Station name Land use Coordinates Altitude (m a.s.l.) 

Bratislava Bratislava, airport Rural 48°10'N, 17°12'E 128 

 Bratislava, Mlynská dolina Urban 48°09'N, 17°04'E 180 
Brno Brno, Tuřany airport Rural  49°09'N,16°41'E 241 

 Brno, Mendel Sqr.  Urban  49°11'N, 16°36'E 206 

Kraków Balice airport Rural  50°04'N, 19°47'E 241 
 Botanical Garden Urban  50°03'N, 19°57'E 206 

Szeged HMS meteorological station Rural 46°15'N, 20°05'E 79 

 HMS climate station Urban 46°15'N, 20°08'E 81 
Vienna Groß Enzersdorf Rural 48°11'N, 16°33'E 153 

 Innere Stadt Urban 48°11'N, 16°22'E 177 

 

The usage of meteorological data in cuboid method (section 4.1) was connected first 

with establishment of the threshold values; daily data from the 30-year period were used to 

obtain for each city, for the rural station, the lowest (cmin) and the highest (cmax) values of 

mean daily air temperature (T), relative humidity (rh) and wind speed (v), at which, at the 

urban station, the maximum air temperature was ≥ 25°C. The combinations of those threshold 
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values made the corners of a “cuboid” (Fig. 2), constructed separately for each city. Then the 

30-year data were used to obtain the spatial pattern of mean annual number of days with tmax 

≥ 25C for each city, for the areas presented in Fig. 1, with the usage of MUKLIMO_3 and 

the cuboid method. The 30-year data were also used as a reference series for the comparison 

with modelled data, for each city. 

4. METHODS 

4.1. MUKLIMO 

MUKLIMO_3 (in German: 3D Mikroskaliges Urbanes KLIma MOdell) is a non-

hydrostatic micro-scale model with z-coordinates, which solves the Reynolds-averaged 

Navier–Stokes equations to simulate atmospheric flow fields in presence of buildings 

(Sievers and Zdunkowski 1985, Sievers 1990, 1995). The thermo-dynamical version of the 

model includes prognostic equations for atmospheric temperature and humidity, the 

parameterization of unresolved buildings, short-wave and long-wave radiation, balanced heat 

and moisture budgets in the soil (Sievers et al. 1983) and a vegetation model based on Siebert 

et al. (1992). The numerical approach for the calculation of short-wave irradiances at the 

ground, the walls and the roof of buildings in an environment with unresolved built-up is 

described by Sievers and Früh (2012). The flow between buildings is parameterized through 

a porous media approach for unresolved buildings (Gross 1989). The model uses high-

resolution orography and land use distribution data. For each land use class, a set of 

parameters is defined to describe land use properties and urban structures: fraction of built 

area (γb), mean building height (hb), wall area index (wb), fraction of pavement of the non-

built area (v), fraction of tree cover (σt) and fraction of low vegetation of the remaining 

surface (σc), height (hc) (Table 4) and leaf area index (LAIc) of the canopy layer as well as 

mean height (ht) and leaf area index (LAIt) of the trees with separated values for the tree trunk 

and the tree crown area. The model does not include cloud processes, precipitation, horizontal 

runoff or anthropogenic heat. 

 

Fig. 2  The concept of the cuboid method (Žuvela-Aloise et al. 2014, Früh et al. 2011) 

  



Urban climate in Central European cities and global climate change 

13 

Table 4  Parameters for land cover properties in MUKLIMO_3 model: fraction of built area (γb), 

mean building height (hb), wall area index (wb), fraction of pavement (v), fraction of tree cover (σt), 

fraction of low vegetation (σc), tree height (ht) and height of the low vegetation (hc). Fractions γb and 

σt are relative to the total grid cell area. Fraction v is relative to the area without buildings and trees 

and σc is relative to the remaining surface 

Land use class 
γb (%) hb (m) wb 

v  

(%) 
σt (%) σc (%) 

ht  

(m) 
hc (m) 

1 Compact high-rise          

2 Compact midrise 0.40 15.00 3.42 0.60 0.00 0.80 0 0.30 

3 Compact low-rise 0.40 8.40 2.40 0.40 0.00 0.80 0 0.30 
4 Open high-rise         

5 Open midrise 0.20 18.60 4.40 0.60 0.00 0.80 0 0.30 

6 Open low-rise 0.20 6.50 2.10 0.40 0.00 0.70 0 0.30 

7 Lightweight low-rise 0.75 3.00 1.80 0.20 0.00 0.30 0 0.30 

8 Large low-rise 0.30 7.00 2.00 0.80 0.00 0.80 0 0.30 
9 Sparsely built 0.10 6.00 2.10 0.20 0.00 0.80 0 0.30 

10 Heavy industry 0.30 7.00 2.00 0.80 0.00 0.80 0 0.30 

A Dense trees 0.00 0.00 0.00 0.00 0.80 0.90 17 0.50 
B Scattered trees 0.00 0.00 0.00 0.00 0.40 0.90 9 0.50 

C Bush. scrub 0.00 0.00 0.00 0.00 0.40 0.90 1.5 0.50 

D Low plants 0.00 0.00 0.00 0.00 0.00 1.00 0 0.50 
E Bare rock or paved 0.00 0.00 0.00 0.95 0.00 0.01 0 0.30 

F Bare soil or sand 0.00 0.00 0.00 0.00 0.00 0.01 0 0.30 

G Water 0.00 0.00 0.00 -1.00 0.00 0.01 0 0.30 

  

In order to calculate climatic indices, such as the mean annual number of summer 

days, the dynamical modelling approach is combined with the so-called “cuboid method” 

(Früh et al. 2011, Žuvela-Aloise et al. 2014). The cuboid method refers to a tri-linear 

interpolation of meteorological fields derived by single-day simulations from an urban 

climate model. The simulations are performed for a set of idealized weather patterns for 

potential situations where a heat load exceedance in the urban centre could occur. Eight 

simulations with duration of 24 hours for two prevailing wind directions are calculated 

representing the cuboid corners (Fig. 2). Calculation of climatic indices for 30-year climatic 

periods is based on maximum temperature fields from the 8 single-day simulations using 

daily time series of T, rh and v, including hourly wind direction from a reference station as 

input. 

4.2. Local Climate Zones 

The Local Climate Zone (LCZ) classification (Stewart and Oke 2012) is an 

outstanding concept for the climate-related classification of urban areas in global scale. 

Although it was originally designed for meta-data communication in observational urban heat 

island studies, its possible applications are numerous. One of the most important ones is the 

possibility to use these zones for the input of different climate or weather models in order to 

better represent urban areas. The use of this concept in these models is advantageous because 

this classification is based on the thermal characteristics of the urban areas, and it is connected 

to the most obvious alteration of the climate in urban areas, the urban heat island (Stewart 

2011). Fig. 3 contains the LCZ classes and definitions.  
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Fig. 3  Local Climate Zones classes and definitions (Stewart and Oke 2012) 

The LCZ system was initially designed for the classification of urban measurement 

sites (Stewart and Oke 2012), but meanwhile several methods for LCZ mapping have been 

proposed (Bechtel and Daneke 2012, Lelovics et al. 2014, Geletič and Lehnert 2016, Bechtel 
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et al. 2015). Our study concentrates on 5 different cities and for each city different databases 

and surface data are available. For this reason we had to choose a simple method for mapping, 

moreover the same method had to be used in all of the cities. Therefore, the same input data 

needed had to be available in all cities. The only suitable method in this situation is the 

Bechtel-method. It applies free-access satellite images, free software and it can be handled 

without expert remote sensing knowledge. The methodology uses two software packages: 

Google Earth and SAGA-GIS. As an input data, it applies globally available Landsat satellite 

images. The workflow consist two main steps (Bechtel et al. 2015).  

First, typical LCZ areas (training areas) have to be located in the study area; this part 

is carried out in Google Earth. The training areas are stored in a kml file containing a set of 

polygons for the different LCZ types and also a rectangle defining the border of the examined 

area. This kml file is used for the second part of the process which is carried out in SAGA-

GIS. Secondly, in SAGA-GIS the Landsat images and the vector file (containing the training 

areas) have to be preprocessed. The Landsat scene is cut with the border of study area in 

order to decrease the computation time, and the imagery is resampled to 100 m from the 

original 30 m to get a representation of the spectral signal of local scale urban structures 

rather than smaller objects. Finally, the classification is conducted with the built in random 

forest classifier based on the Landsat images and the training area polygons. The classifier 

calculates the most likely LCZ type and the probabilities for all LCZ classes for each pixel. 

For the study areas included in the present paper, we used all spectral bands of 19 

Landsat 7 and 8 images (Bratislava: 3 images, Brno: 4, Kraków: 4, Szeged: 5, Vienna: 3). 

The use of multiple images from different seasons is advantageous, as with more spectral 

information the classification gives better results. The scenes were obtained from USGS 

(earthexplorer.usgs.gov). The criterion of the selection of these images was to ensure the 

absence of clouds. The LCZ classification outcome for particular cities is shown in Fig. 1. 

4.3. EURO-CORDEX 

Climate models provide key information on the impacts of 21st century climate change 

but are limited in their capacity to represent the relatively small scales needed for decision 

making on adaptation. Large collaborative research projects such as EURO-CORDEX (Jacob 

et al. 2013) have generated climate change scenarios via Regional Climate Models (RCMs). 

EURO-CORDEX simulations use the new Representative Concentration Pathways (RCPs) 

defined in the Fifth Assessment Report of the IPCC (Moss et al. 2010, IPCC 2013). RCPs do 

not identify socioeconomic scenarios; they express the change in radiative forcings, 

introduced by altered land use patterns at the end of the twenty-first century relative to pre-

industrial conditions (Table 5). For instance, the EURO-CORDEX simulations consider the 

RCPs scenarios corresponding to stabilization of radiative forcing after the 21st century at 4.5 

Wm-2 (RCP4.5) (Smith and Wigley 2006, Clarke et al. 2007, Wise et al. 2009), rising 

radiative forcing crossing 8.5 Wm-2 at the end of 21st century (RCP8.5) (Riahi et al. 2007), 

and peaking radiative forcing within the 21st century at 3.0 Wm-2 and declining afterwards 

(RCP2.6) (van Vuuren et al. 2007). 

The EURO-CORDEX simulations not only consider the new RCP scenarios, they 

increase the spatial resolution based on multiple dynamical and empirical-statistical 

downscaling. The members of the ensemble are forced by multiple global climate models 

from the Coupled Model Intercomparison Project (CMIP5) and the simulations focus on grid-

sizes of about 12 km (0.11°, EUR–11) and 50 km (0.44°, EUR–44) for the complete European 

model domain. 
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Table 5  Characteristics of the new Representative Concentration Pathways (RCPs) 

Name 
Radiative 

forcing 
CO2 eq. 

(ppm) 

Temp. 

anomaly 

(°C) 

Pathway 
SRES 

temp. eq. 
Number of 

experiments 

RCP8.5 
8.5 Wm-2 

in 2100 
1370 4.9 Rising SRES A1FI 7 

RCP4.5 
4.5 Wm-2 
past 2100 

650 2.4 

Stabilization 

without 

overshoot 

SRES B1 7 

RCP2.6 
2.6 Wm-2 

by 2100 
490 1.5 

Peak and 

decline 
None 1 

 

For this study, five different GCMs and three different RCMs have been used for the 

establishment of one simulation for RCP2.6 and seven simulations for RCP4.5 and RCP8.5 

for the EUR-11 domain (Table 6). All changes in output variables (mean temperature, relative 

humidity, wind speed and direction) have been analysed for the city areas using daily data 

for three time periods: 1971–2000, 2021–2050 and 2071–2100. 

Table 6  GCM-RCM model chains used to generate the different climate change projections used in 

this study 

Model 

RCP2.6 RCP4.5 RCP8.5 

Near-surface temperature [K]  

Near-surface relative humidity [%] 

Eastward Near-Surface Wind [ms-1] 

Northward Near-Surface Wind [ms-1] 

EUR-11_CNRM-CERFACS-CNRM-CM5_*_SMHI-RCA4    
EUR-11_ICHEC-EC-EARTH_*_SMHI-RCA4    

EUR-11_ICHEC-EC-EARTH_*_KNMI-RACMO22E    

EUR-11_ICHEC-EC-EARTH_*_DMI-HIRHAM5    

EUR-11_IPSL-IPSL-CM5A-MR_*_SMHI-RCA4    

EUR-11_MPI-M-MPI-ESM-LR_*_SMHI-RCA4    

EUR-11_MOHC-HadGEM2-ES_*_SMHI-RCA4    

 

The outputs of the climate models do not offer perfect results as they describe complex 

processes and interactions. We can observe systematic errors in the outputs. To minimize this 

error we should use error correction processes. There are abundant of known processes, in 

this study we used a bias correction method. 

The applied correction method is based on that we can completely describe the 

statistical properties of given datasets with their distribution and probability functions. So we 

can say that two data series are the same if their distribution and probability functions are the 

same (Formayer and Haas 2009). Thus if we want to correct a dataset based on its statistical 

properties we have to achieve that the distribution function will be the same of the 

measurements. Therefore to apply this method we should have dataset from measurements 

for a given time period. For this common period we suit the distribution functions of the 

measurement and the model with correction factors and we assume that the deviation will be 

permanent. In case of temperature the correction factors are the deviations of the percentiles. 

In this study we used the 1971–2000 time period as reference period. We calculated 

the 1% percentiles and their deviation for the datasets of the measurement and the model 

simulations. We corrected the temperature datasets for the 2021–2050 and 2071–2100 

periods based on the deviation of the reference period. In case of the relative humidity we 

took into consideration the corrected temperature data. The other correction that we made is 
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the correction of the temperature gradient in height. We surveyed the altitude for each city 

and for each grid points which are the nearest to the city in the model outputs. We calculated 

the deviation and took into account the decrease of the temperature in height applying the 

0.65°C / 100 m value. 

4.4. Estimation of the change in heat load 

For the present study, the heat load is expressed in the mean annual number of days 

with maximum air temperature ≥ 25C, i.e. summer days. The change in the heat load due to 

predicted climate changes is then defined as the difference in the mean annual number of 

summer days between a 30-year period representing the present conditions, 1971–2000, and 

two periods representing future conditions: 2021–2050 and 2071–2100. Therefore, first the 

spatial pattern on mean annual number of summer days, for each city and period considered, 

was obtained with the usage of MUKLIMO_3 and cuboid method. For each of the two future 

periods (2021–2050 and 2071–2100), the calculations were made separately for each climate 

scenario (i.e. RCP2.6, RCP4.5 and RCP8.5). For RCP2.6, the results obtained with one model 

were used, while for RCP4.5 and RCP8.5, mean values from seven models were used (see 

Table 6). The comparative analysis of the patterns allows to define areas in particular cities 

which are and/or are supposed to be the “hot spots” and “cold spots”, and which might 

experience the largest and the smallest changes in the heat load in the future. The changes of 

the heat load can be also calculated 

separately for areas with particular LCZ type 

in order to show whether all kinds of land 

use/land cover will react to the climatic 

changes in a similar way. For each city and 

period, mean, maximum and minimum 

number of summer days for the whole 

domain considered was calculated. The 

mean value is representative for the whole 

area, while maximum and minimum values 

describe extreme conditions occurring in the 

area and constitute the range of the 

phenomenon’ variability. The changes can 

be expressed in absolute numbers or in 

percentage; the latter is especially useful in 

comparative studies between the cities. 

5. RESULTS 

5.1. Reference 

The map of the summer days 

calculated using the measured climate data 

in Szeged has a characteristic spatial pattern 

(Fig. 4). In the city center, we find the 

highest values (about 100-110 days) in the 

time period 1981–2010. In the less dense 

 
Fig. 4  Mean annual number of summer days in 

Szeged in the period 1981–2010 using the 

measured data 

 
Fig. 5  Mean annual number of summer days in 

Szeged in the period 1971–2000 using the data 

of the climate models 
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landforms we found less number of summer 

days, in open midrise areas about 90–100 

days, open low-rise areas 70–80 days. In 

rural areas there was only 60–70 days. 

The time period 1971–2000 is the 

standard reference time for climate models. 

Fig. 5 shows the map for this period 

calculated using the climate data from 

climate models. It has almost similar spatial 

pattern to the one of 1981–2010. In the city 

center, there are the highest values (about 

90–100 days), in open midrise areas about 

80–90 days, in open low-rise areas 70–80 

days, and in rural areas only 60–70 days. 

In case of Vienna, the reference 

simulation shows a typical spatial 

distribution with the maximum heat load in 

densely built-up areas in the city center and 

in residential areas in the flat terrain north-

east of the river Danube (Fig. 6). Both 

orography and land use distribution 

influence the thermal characteristics. Due to 

the orography and prevailing winds from the 

northwest and southeast, the heat load in the 

residential areas located on the hill slopes in 

the west is lower than the heat load in the 

same type of built-up in the flat terrain 

located southward and eastward of the city 

center. The spatial pattern in the simulations 

for the periods 1971–2000 and 1981–2010, 

based on the measured data, is similar. 

However, the more recent climate period 

indicates a warming trend, which is found in 

observational time series. The simulation for 

the time period 1971–2000 based on climate 

model data is similar to the simulation based 

on the observational data for the same time 

period. The simulation based on the climate 

model data is further use as the reference for 

evaluation of future climate changes. 

Fig. 7 presents distribution of 

summer days in Brno as simulated with 

MUKLIMO model for recent climate. 

Spatial distribution of this variable reflects 

well the role of the main natural and 

anthropogenic factors that form urban 

climate. In case of Brno area, those are mainly altitude and land cover type. Under recent 

 

 

 
Fig. 6  Mean annual number of summer days in 

Vienna in the period 1971–2010 (top) and 

1981–2010 (center) using the measured data 

and 1971–2000 (bottom) using the data of the 

climate models 
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climate conditions, the number of summer days varies from 20–30 in northern and western 

parts in higher elevations to more than 100 in the city center. Spatial distribution of summer 

days within the Brno cadastral correlate well with density of buildings. The highest values 

are typical for the city center, but also for the Brno exhibition area (located south-east from 

the center) and also for relatively large areas of former factories (north-west of city center). 

Three maps on Fig. 7 for three successive 30-year long periods also well document gradual 

rising of air temperatures in this area. This increasing trend is statistically significant 

especially for summer months and on average it reaches 0.5°C / 10 years in the period 1961–

2010. 

 
Fig. 7  Mean annual number of summer days simulated using the data of the climate models in Brno 

for in three different reference periods (1961–1990, 1971–2000, 1981–2010) 

  
Fig. 8  Mean annual number of summer days in Bratislava in the period 1981–2010 using the 

measured data (left) and in the period 1971–2000 using the data of the climate models (right) 

In Bratislava, reference simulation also shows a considerable influence of terrain, as 

there is an evident connection between lower heat load and higher altitude, while there are 

also clearly defined most compact built-up urbanized areas. There is an obvious spatial 
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distribution of highest number of summer days with higher values in most compact urban 

areas in the center, as well as in residential districts to the south and industrial to the east. 

The spatial pattern also clearly shows the impact of the mountain range and forested areas in 

the north and west with the lowest observed values. The simulations for the periods 1971–

2000 and 1981–2010 (Fig. 8) share a similar spatial pattern, but there are slightly higher 

values in case of 1981–2010 period related to the warming in recent years and partly due to 

the different form of input (climate model vs. real station measurements). Difference between 

simulation of 1971–2000 based on climate model data and 1981–2010 based on real 

observation however is not overly significant. For both simulations the highest values are in 

the range of about 100–110 days, and the lowest at only 20–30 days. 

In Kraków, the data for the reference period 1971–2000 show that in the most densely 

urbanized areas, mean annual number of summer days was about 60 days (in 1981–2010: 

about 66) while e.g. in forested areas located within the city borders the number was below 

5 days (1981–2010: 5.6; Fig. 9). Large differences are also seen in rural areas between valleys 

and hilltops nearby; the values for the valleys were significantly larger. As suburban areas 

tend to develop intensively, relatively large values of the number of summer days can be also 

observed in areas surrounding the city, especially in small cities like Wieliczka or Skawina. 

The area of the Vistula river bottom is rather diversified in terms of the index discussed, as 

there are the most urbanized areas located, together with large areas of urban green and water 

areas. 

  
Fig. 9  Mean annual number of summer days in Kraków in the period 1971–2000 using the data of the 

climate models (left) and in the period 1981–2010 using the observations (right) 

5.2. Validation 

In Szeged, for the validation, we compared the data from the map of summer days, 

from the points located closest to the two meteorological stations in Szeged, with the data 

available from those stations. The data from the rural station is a mean value for 1981–2010, 

in urban station is a mean value for 1999–2010. In rural station the model resulted 54 summer 

days and based on the measurements there was 89 days. For the urban site the values are 

more similar, based on the measurements there is 94 days and the model gives 108 days. 

In case of Vienna, the model results for the time period 1981–2010 are compared to 7 

monitoring stations which have more than 10 years of measurements. The model results for 

the urban station Vienna Innere Stadt agree well with the observations. Mean annual number 

of summer days in the model is 79.4, while observed value is 72.3 summer days in average 
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for the period 1985–2010. At the rural 

station Groß Enzersdorf, an average of 65.7 

summer days is observed. The model results 

yield a value of 56.8 summer days, which 

underestimates the measured value by 14%. 

However, the comparison between stations 

in different environment shows variable 

model performance. The best agreement is 

found for the station Vienna Hohe Warte  

(-5%) located in residential areas in 

northwestern part of the city. In comparison 

with the station Groß Enzersdorf, the results 

for the airport station Schwechat 

representative for the rural environment as well, show a slight overestimation (68.5 summer 

days in the model compared to the 62.8 summer days in monitoring records). The reason for 

variable model performance could be the simplified land use distribution when using LCZ 

classification, which might not be representative for different micro-environments in Vienna. 

In case of Brno, direct validation of simulated number of summer days can be done 

only for Brno, Tuřany station (Fig. 10). This station is located at the Brno airport in south-

east part of the cadastral area and unfortunately, this station is neither typical urban nor 

typical rural station. From Fig. 10 it follows that model MUKLIMO 3D in general 

overestimates the number of summer days and this overestimation is about 50–60%. 

However, it must be stressed that this type of validation that is based on only one station may 

be biased or not well representative, because the found difference may be influenced due to 

many factors, e.g. proper classification of LCZ in this area. 

For the city of Bratislava, the model in selected rural location within the modeled 

region shows on average 56 summer days for 1981–2010 period, while according to the 

measurements at respective rural station the mean annual number of summer day was 69 

summer days. As for urban location (within the airport area) the model states that there was 

on average 72 summer days during year and according to the measurements at local station 

in 1981–2010 period the mean annual number of summer days was 54. In both rural and 

urban locations the mean annual number of summer days for 1981–2010 period presented by 

model, was therefore lower than values provided by station measurements. 

In case of Kraków, data from the two stations mentioned in table 3 (Balice airport, 

rural station and Botanical Garden, urban station) were used for comparison with the data 

generated with the model. The data presented in Table 7 show that the model shows lower 

values than measured, as already mentioned for other cities. However, the tendencies of 

changes are predicted correctly; the measurements show that the difference in the number of 

summer days between the urban and rural station decreased from 12.1 days (1971–2000) to 

10.2 days (1981–2010) and the modelled values are 15.3 and 14.3 days. 

Table 7  Mean annual number of summer days at the rural (Balice airport) and urban (Botanical 

Garden) stations in Kraków, according to measurements and modelled values 

Period 1971–2000 1981–2010 

Station measured modelled measured modelled 

Balice airport 38.1 28.6 46.2 31.3 

Botanical Garden 50.2 43.9 56.4 45.6 

  

 
Fig. 10  Mean numbers of summer days as 

measured (left) and simulated with the 

MUKLIMO 3D model (right) in Brno area for 

three different periods representing recent 

climate 
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5.3. Future scenarios 

In this section, the predictions of heat load changes in 2021–2050 and 2071–2100 are 

presented. First the data for each city is analyzed and then an attempt of comparative analysis 

of all the cities is undertaken. 

In Szeged, in the period 2021–2050, the number of summer days is supposed to 

increase compared to the present conditions. The spatial pattern is supposed to remain 

unchanged. The highest number of summer days is expected to be found in the city center. 

However, in case of RCP2.6 and RCP4.5, the number of summer days in the city centre is 

supposed to reach about 120 days, while in case of RCP8.5 it is 130 days (Fig. 11). 

  

  

  

Fig. 11  Mean annual number of summer days in 

Szeged in the period 2021–2050 using the model 

simulations for the RCP2.6 (top) RCP4.5 (center) 

and RCP8.5 (bottom) scenarios 

Fig. 12  Mean annual number of summer days in 

Szeged in the period 2071–2100 using the model 

simulations for the RCP2.6 (top) RCP4.5 (center) 

and RCP8.5 (bottom) scenarios 



Urban climate in Central European cities and global climate change 

23 

 
 

  

  
Fig. 13  Mean annual number of summer days 

in Vienna in the period 2021–2050 using the 

model simulations for the RCP2.6 (top) RCP4.5 

(center) and RCP8.5 (bottom) scenarios 

Fig. 14  Mean annual number of summer days 

in Vienna in the period 2071–2100 using the 

model simulations for the RCP2.6 (top) RCP4.5 

(center) and RCP8.5 (bottom) scenarios 
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Fig. 15  Mean annual number of summer days 

in Kraków in the period 2021–2050 using the 

model simulations for the RCP2.6 (top), 

RCP4.5 (center) and RCP8.5 (bottom) 

scenarios 

Fig. 16  Mean annual number of summer days 

in Kraków in the period 2071–2100 using the 

model simulations for the RCP2.6 (top), 

RCP4.5 (center) and RCP8.5 (bottom) 

scenarios 

For the end of the century (2071–2100) the number of summer days is significantly 

different in different RCPs. The spatial patterns are basically similar in each case, because 

the urban effects are similar, i.e. it is assumed in the present analysis that the land use/land 

cover remains unchanged. In the case of RCP2.6 (Fig. 12) there is no change compared to 

2021–2050 (Fig. 11). RCP4.5 represents a moderate change in the number of summer days, 
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the highest values are around 140 days. RCP8.5 is the worst scenario and the results differ 

significantly from the other scenarios and time periods, because the highest values are around 

160 days (Fig. 12) and even in the rural areas the numbers of summer days are higher than 

the numbers of summer days in the urban areas in the present climate conditions (Figs. 4, 5). 

  

  

  
Fig. 17  Mean annual number of summer days 

in Brno in the period 2021–2050 using the 

model simulations for the RCP2.6 (top), 

RCP4.5 (center) and RCP8.5 (bottom) 

scenarios 

Fig. 18  Mean annual number of summer days 

in Brno in the period 2071–2100 using the 

model simulations for the RCP2.6 (top), 

RCP4.5 (center) and RCP8.5 (bottom) 

scenarios 
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In case of Vienna, the model results for the time period 2021–2050 show moderate 

increase in the number of summer days compared to the reference simulation (Fig. 13). The 

intensity of warming and the spatial pattern do not vary much between different climate 

scenarios. For the end of the century (2071–2100) the increase in number of summer days is 

substantially different for each RCP scenario (Fig. 14). Minimal change is found for the RCP2.6 

compared to the 2021–2050 simulation. The RCP4.5 indicates an intermediate change, while 

the RCP8.5 scenarios shows extreme increase in the number of summer days. The highest 

values are around 120 days compared to about 70 days found in the reference simulation. 

In Kraków, for the period 2021–2050, all scenarios show a slight increase in the mean 

annual number of summer days; the mean value for the whole domain is expected to increase 

by about 10 days and reach the value of about 30 days (Fig. 15). In case of the period 2071–

2100 (Fig. 16), the uncertainty of predictions increases, and mean values vary depending on 

the scenario chosen from 30 to 65 days. For both periods considered, the spatial pattern shows 

the impact of both land use/land cover and relief on the thermal conditions. The highest 

numbers of summer days can be found in densely built-up areas, located in the valley floor, 

and in urban areas located close to Kraków borders. The lowest values are observed for 

forested areas. Additionally, in rural areas surrounding Kraków, larger numbers of summer 

days can be found in the valleys than at the hilltops nearby. Green urban areas located 

between strongly urbanized parts of the city show smaller number of summer days than built-

up areas. 

In case of Brno, the model results for the middle of this century (2021–2050) show 

about 40% increase in the number of summer days compared to the reference simulation for 

RCP4.5, RCP8.5 scenarios (Fig. 17). Distinctly higher number of summer days show RCP2.6 

scenario (increase about 60% compared to recent climate). This difference, however, is 

related to the fact that lower number of regional model outputs was used for RCP2.6 scenario. 

Simulated numbers of summer days are compared to the reference Brno, Tuřany station. Thus 

there is and an increase from about 37 days (1971–2000) to 52 days (2021–2050) in case of 

scenarios RCP4.5 and RCP8.5 and 57 days (2021–2050) in case of RCP2.6. Quite different 

results as for individual scenarios were found for the Brno climate simulations of the end of 

the 21 century (2071–2100) – see Fig. 18. While RCP2.6 scenario predicts on average 52 

summer days in Brno area, RCP4.5 scenario predicts slightly higher – 59 summer days (that 

is 60% increase compared to the present). Significantly higher number of summer days can 

be seen for the RCP8.5 scenario; 81 summer days represents 120% of the present value. 

In case of Bratislava, there is a moderate increase in the number of summer days in the 

study area for the time period 2021–2050 compared to the reference simulation (Fig. 19). The 

scenarios show that mean number of days for the whole region would increase by around 20 days. 

The maximum number of summer days in 2021–2050 period for the worst RCP8.5 scenario could 

be 130 days, which is about 26 more summer days annually compared to the reference simulation 

of 1971–2000. In the later 2071–2100 period the average and maximum number of summer days 

within the modeled region as well as their spatial distribution have greater variance depending on 

the input scenario (Fig. 20). Mean values in this period calculated for the whole region vary 

depending on the scenario from 78 to 119 days. The model yields a maximum value of 148 

summer days for RCP8.5 scenario compared to about 100 days found in the reference simulation. 
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Fig. 19  Mean annual number of summer days 

in Bratislava in the period 2021–2050 using the 

model simulations for the RCP2.6 (top), 

RCP4.5 (center) and RCP8.5 (bottom) 

scenarios 

Fig. 20  Mean annual number of summer days 

in Bratislava in the period 2071–2100 using the 

model simulations for the RCP2.6 (top), 

RCP4.5 (center) and RCP8.5 (bottom) 

scenarios 
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5.4.Changes of heat load in land use types 

In order to analyze the heat load 

change in connection with land use/land 

cover, the following procedure was used. 

One or a few points were found for each 

LCZ in each city.  

Those were the points in the centers 

of the largest homogenous LCZ areas of the 

city. For those points, maximum, minimum 

and mean values of mean annual number of 

summer days were compared, using data 

from the EURO-CORDEX climate models 

(see section 4.3) downscaled with cuboid 

method (see section 4.1). The procedure 

allows to compare the absolute or relative 

(% change) values of the cities for different 

30-year periods. The procedure is shown 

using the example of Szeged and Brno. 

In Szeged, the intra urban difference 

is significant in the present climate 

conditions, LCZ9 (sparsely built) and LCZ6 

(open low-rise) have less summer days. 

LCZ2 (compact mid-rise) has two times 

more summer days than LCZ9 (Fig. 21). 

The intra urban differences remain 

the same in the period 2021–2050 (Fig. 22) 

or 2071–2100 (Fig. 23). In the period 2021–

2050, the minimum predicted number of 

summer days occur in LCZ9 and the 

maximum in LCZ2. Difference between 

models is almost the same as the difference 

between LCZs except LCZ9. In period 

2071–2100 the thresholds of the different 

models are increasing. 

Relative values were calculated for 

the minimum, maximum and mean of model 

results for particular LCZ type. In case of 

RCP2.6, 4.5 and 8.5 the reference value was 

the model mean for 1971–2000. The results 

show that the highest increase is predicted in 

LCZ9 or LCZ6 (Figs. 24, 25). Those are the 

areas with less dense built-up than the city 

centre, so the increase in built-up area share 

in those parts of the city can cause serious 

hazards for the inhabitants, due to the 

increase of the heat load. The differences in 

 
Fig. 21  Maximum, mean and minimum of mean 

annual number of summer days in Szeged in the 

period 1971–2000 using the applied climate 

models in different LCZ classes 

 
Fig. 22  Maximum, mean of the different RCPs 

and minimum of mean annual number of summer 

days in the period 2021–2050 using the applied 

climate models in different LCZ classes in Szeged 

 
Fig. 23  Maximum, mean of the different RCPs 

and minimum of mean annual number of summer 

days in the period 2071–2100 using the applied 

climate models in different LCZ classes in Szeged 
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relative change (Figs. 24, 25) are not enough to distinguish the differences in the number of 

the summer days between LCZs (Figs. 22, 23). 

Similar analysis was performed for Brno and the results are shown in Figs. 26–30. In 

1971–2000, the highest mean values were observed for LCZ2 (compact mid-rise) and LCZ 

8 (large low-rise). The highest increase is predicted in LCZ9, like in the case of Szeged. 

  
Fig. 24  Change of maximum, mean of the 

different RCPs and minimum of mean annual 

number of summer days in the period 2021–2050 

using the applied climate models in different LCZ 

classes compared to 1971–2000 (min., mean and 

max., respectively) in Szeged 

Fig. 25  Change of maximum, mean of the diffrent 

RCPs and minmum of mean annual number of 

summer days in the period 2071–2100 using the 

applied climate models in different LCZ classes 

compared to 1971–2000 (min., mean and max., 

respectively) in Szeged 

 
 

Fig. 26  Maximum, mean and minmum of mean 

annual number of summer days in Brno in the 

period 1971–2000 using the applied climate 

models in different LCZ classes 

Fig. 27  Maximum, mean of the different RCPs 

and minimum of mean annual number of summer 

days in the period 2021–2050 using the applied 

climate models in different LCZ classes in Brno 
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Fig. 28  Maximum, mean of the different RCPs 

and minimum of mean annual number of summer 

days in the period 2071–2100 using the applied 

climate models in different LCZ classes in Brno 

Fig. 29  Change of maximum, mean of the 

different RCPs and minimum of mean annual 

number of summer days in the period 2021–2050 

using the applied climate models in different LCZ 

classes compared to 1971–2000 (min., mean and 

max., respectively) in Brno 

6. DISCUSSION 

The results obtained for particular 

cities can be compared in order to formulate 

the features characteristic for the cities in the 

whole region of Central Europe. The 

predictions for the period 2021–2050 show 

a rather slight increase in the mean annual 

number of summer days, while for the 

period 2071–2100, the predicted values are 

much larger. The scenario RCP2.6 is the 

most optimistic one in terms of future CO2 

concentration and impact, but unfortunately 

the chances that it will be realized are rather 

modest. Therefore, the predictions for the 

period 2071–2100, for the scenarios RCP4.5 

and RCP8.5 were analyzed further. Tables 8, 

9 and 10 present the characteristic values for each city and scenario, in relation to the 

reference period 1971–2000. The values in Table 8 refer to the results shown in Figs. 11-20. 

Table 8 shows large differences among the cities in the mean number of summer days 

in the reference period 1971–2000 (mean values for the whole domains). Cities located in the 

southern part of Central Europe (represented by Szeged) have on average twice as much 

summer days than cities located north of the Carpathian Mts. (represented by Kraków). It is 

a result of climatic variability of Central Europe, linked to the transitional character of all 

elements of the natural environment. The Carpathian Mts. constitute a significant climatic 

barrier. South of that mountain chain, the impact of the Mediterranean Sea is one of the 

factors controlling climatic conditions while north of the Carpathians, polar air masses 
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Fig. 30  Change of maximum, mean of the 

different RCPs and minimum of mean annual 

number of summer days in the period 2071–2100 

using the applied climate models in different LCZ 

classes compared to 1971–2000 (min., mean and 

max., respectively) in Brno 
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(maritime from the west and continental from the east) decide about large weather variability 

and more severe climatic conditions. 

Table 8  Mean annual number of summer days, 1971–2000 and 2071–2100 (RCP4.5 and RCP8.5) 

  Mean   Min   Max  

City 1971– 2071–2100 1971– 2071–2100 1971– 2071–2100 

 2000 RCP4.5 RCP8.5 2000 RCP4.5 RCP8.5 2000 RCP4.5 RCP8.5 

Kraków 20.3 37.8 59.2 4.0 14.8 28.7 61.1 78.6 100.3 
Brno 37.2 59.3 81.4 10.5 27.4 40.7 83.4 102.1 123.1 
Vienna 45.4 70.0 93.4 7.2 21.3 40.0 82.8 107.8 128.8 
Bratislava 56.4 85.9 107.8 20.6 42.4 65.0 104.1 131.2 148.9 
Szeged 50.1 79.1 104.3 7.8 24.3 78.5 123.4 142.8 159.1 

Explanations: mean – mean value for the whole domain of a certain city (see Fig. 1), min – the lowest value 

found in a domain, max – the highest value found in the domain 

 

Additionally, data from Table 8 show that the difference in mean annual number of 

days (mean values for the whole domain) between Szeged and Kraków might increase in the 

future: for 1971–2000 it was about 30 days, while for 2071–2100 it is predicted to increase 

up to about 41–45 days, depending on the scenario. Minimum and maximum values shown 

in table 8 are much more dependent on local land use/land cover variability than on general 

climatic conditions; those values represent areas in each city where extremely low or high 

values can occur. But those values also show the range of the values that can be experienced 

in each city. For the reference period, the largest difference was noted for Szeged (about 166 

days) while the smallest for Kraków (57 days). In all cities, maximum and minimum values 

are predicted to increase, but the changes in the range of the values (i.e. the difference 

between the maximum and minimum value) shows no uniform tendency. In Kraków, Brno 

and Vienna the range is predicted to increase in comparison to 1971–2000 (by 2–15 days, 

depending on the scenario used), in Bratislava it is predicted to be almost unchanged, and in 

Szeged – it might decrease even by 35 days. The decrease for Szeged might constitute a 

particular hazard for the inhabitants. 

Tables 9 and 10 show the absolute and relative changes of the values shown in Table 

8. Relative values (in %) in table 10 show a larger increase in mean values for the whole 

domain in the north of the region (Kraków and Brno: 192 and 119% for RCP8.5) than in the 

south (Szeged: 108% for RCP8.5). An interesting feature is the difference in most values 

between Vienna and Bratislava, as they are located so close to each other. On one hand, 

Bratislava is a much smaller city than Vienna, so the impact of built-up area on urban climate 

is smaller, too. On the other hand, each city is located in different environmental conditions, 

including relief, which is a significant element controlling urban climate. From all the cities 

considered, Szeged is the only one located in a flat area and it is also the smallest city 

comparing to the others. Even though the absolute number of summer days (mean for the 

whole domain) is predicted to be the highest there in 2071–2100, the relative increase is 

comparable to Vienna or Brno, while for Kraków the values of relative increase are the 

highest. The indices discussed above allow to see the regional dimension of the predicted 

heat load increase. The local dimension can be discussed for each city in terms e.g. of the 

spatial planning. As mentioned in the introduction section, all cities studied except Szeged 

are located in a complicated relief conditions. The figures presented in section 3 show that 

concave land forms (e.g. valley bottoms) experience larger numbers of summer days than 

nearby hilltops. It is a phenomenon well known from the studies on the climate of the 

mountains. Even though the cities considered are not located in the mountains, the differences 
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in relative altitude are large enough to contribute to the generation of the processes known 

from mountainous areas (e.g. katabatic flows, air temperature inversions). However, those 

processes can be observed mainly during the night time, while the present study concerns the 

daytime and the occurrence of the maximum temperature ≥ 25C. During the day time, there 

are no such large differences in air temperature between valleys and hilltops as during the 

night but valley floors tend to have higher maximum air temperature and that is also visible 

in the data presented above. 

Table 9  Increase (in number of days) of mean annual number of summer days in the periods1971–

2000 and 2071–2100 (RCP4.5 and RCP8.5) 

  Mean   Min   Max  

City 1971– 2071–2100 1971– 2071–2100 1971– 2071–2100 

 2000 RCP4.5 RCP8.5 2000 RCP4.5 RCP8.5 2000 RCP4.5 RCP8.5 

Kraków 20.3 17.5 38.9 4.0 10.8 24.7 61.1 17.5 39.2 
Brno 37.2 22.1 44.2 10.5 16.9 30.2 83.4 18.7 39.7 
Vienna 45.4 24.6 48.0 7.2 14.1 32.8 82.8 25 46 
Bratislava 56.4 29.5 51.4 20.6 21.8 44.4 104.1 27.1 44.8 
Szeged 50.1 29.0 54.2 7.8 16.5 70.7 123.4 19.4 35.7 

Explanations: mean – mean value for the whole domain of a certain city (see Fig. 1), min – the lowest value 

found in a domain, max – the highest value found in the domain 

Table 10  Increase (in %) of mean annual number of summer days, in the periods 1971–2000 and 

2071–2100 (RCP4.5 and RCP8.5) 

  Mean   Min   Max  

City 1971– 2071–2100 1971– 2071–2100 1971– 2071–2100 

 2000 RCP4.5 RCP8.5 2000 RCP4.5 RCP8.5 2000 RCP4.5 RCP8.5 

Kraków 20.3 86 192 4.0 270 618 61.1 29 64 
Brno 37.2 59 119 10.5 161 288 83.4 22 48 
Vienna 45.4 54 106 7.2 196 456 82.8 30 56 
Bratislava 56.4 52 91 20.6 106 215 104.1 26 43 
Szeged 50.1 58 108 7.8 212 906 123.4 16 29 

Explanations: mean – mean value for the whole domain of a certain city (see Fig. 1), min – the lowest value 
found in a domain, max – the highest value found in the domain 

7. CONCLUSIONS 

According to the predictions presented, an increase in heat load, expressed in mean 

annual number of summer days, is expected in urban areas of Central Europe. Mean values 

for particular study areas are expected to increase by 2100, comparing to 1971–2000, by 20–

50 days, depending on the scenario used. The regional spatial pattern of the predicted values 

of mean annual number of summer days shows dependence on latitude, i.e. for cities located 

in the northern part of the study area, the values are lower than for cities located in the south. 

The difference for mean values, for particular study areas, reaches about 40 days. The local 

spatial pattern shows the impact of both land use/land cover and relief. The largest values of 

mean annual number of summer days are observed in areas with intense built-up which are 

located in the valley floors. In rural areas, larger values are observed in the valleys than in 

the hill tops. The differences between the places with the lowest value and the largest value 

in particular cities reach 60–100 days, depending on the scenario used. 
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The results obtained might be useful e.g. in spatial planning in particular cities, but 

they should be also used for a long-term education of local communities. The predicted 

changes call for preparedness and planning of the mitigation actions. Those are actions which 

cannot be realized without a relatively high level of public awareness of the issue discussed. 

First of all, the density of existing built-up structures should not be increased as it might 

generate in the future the intensification of the heat load. New buildings should be located in 

areas located well above the river valley floor, so as to avoid the enhancement of heat load 

increase by overlapping effect of both relief and land use. Additionally, each city should 

elaborate a “strategy of shading”, e.g. by increasing the number of trees. Urban green areas 

may contribute to the decrease of heat load only when they are arranged in such a way as to 

increase the city albedo, i.e. reflect the solar radiation and do not allow it to be absorbed by 

the urban structures.  

The area of Central Europe is very diversified in terms of the natural environment 

conditions. Effects of factors of regional importance are modified significantly by the impact 

of various local conditions. The results presented above for the five cities of Central Europe 

show, on one hand, the high diversity of the region, but on the other hand, they present a 

tendency common for the whole area of Central Europe, namely the predicted increase in the 

heat load in urban areas. Those results are in accordance with results available for the whole 

continent. Therefore, further research on potential consequences of that phenomenon is 

needed, together with the transfer of this scientific knowledge to the decision makers, 

responsible for spatial planning and citizens’ health and well-being. 
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ABSOLUTE MOISTURE CONTENT IN MID-LATITUDE URBAN CANOPY 

LAYER, PART 1: A LITERATURE REVIEW 
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Summary: This part of the study on absolute moisture content in the mid-latitude urban canopy layer first gives a 
comparison on intra-urban relative and absolute humidity patterns showing an example based on a long dataset. The 

comparison clearly demonstrates the usefulness of the utilization of absolute measure opposite to the temperature 

dependent relative one. This supports the earlier statements found in the literature albeit these statements are based 
on only case studies or short datasets. Then a short overview follows which presents the main results of studies about 

urban absolute moisture content. These studies focused mainly on urban-rural and less on intra-urban humidity 

differences. The scale differences are used for the grouping of studies based on the number of available measurement 
sites as well as their spatial distribution and density in the investigated urban regions. 

Key words: relative humidity, vapor pressure, other humidity measures, urban-rural differences, intra-urban 

differences 

1. INTRODUCTION 

Urban regions modify the originally natural landscapes which means transformation 

in their radiative, thermal, moisture and aerodynamic characteristics reflecting in datasets of 

different climate parameters (temperature, humidity, precipitation, wind, etc.) (Oke 1987). It 

has long been known in the related literature that the relative humidity (RH, %) is generally 

lower in the near-surface air in the built-up areas (urban canopy layer, UCL) relative to their 

surroundings, especially in the evening/night hours because of the temperature-dependence 

of RH. It is mainly explained by the developing urban heat island phenomenon, that is the 

momentary urban RH pattern is the mirror image of this and it is calling as “urban dry island 

– UDI” (Moriwaki et al. 2013, Cuadrat et al. 2015). Therefore, the extent of this negative RH 

deviation is closely related to the strength of the heat island and its daily variation (e.g. 

Ackerman 1987, Oke et al. 2017). 

In contrast, if we are interested in not the relative but the absolute amount of air 

moisture (moisture content of air) and its urban-rural or intra-urban differences or patterns, 

we need to use other measures (e.g. vapor pressure – e, dew point temperature – Td, absolute 

humidity/vapor density – pv, specific humidity – q) having other units instead of % 

(hPa/mmHg/mb, °C/°F, gm-3, gkg-1, respectively) (Oke et al. 2017). Moriwaki et al. (2013) 

summarized the importance of the spatial and temporal distribution of air moisture 

mentioning that local severe rainfall is occasionally caused by the urbanization induced 

convergence of water vapor, as well as the humidity level can influence the plants life, the 

thermal comfort and health of people living in urban environment. 
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As our study has general and specific aims we split it into two parts. The first (recent) part 

is organized as follows:  

(1) Presentation of the mean summer patterns of relative and absolute amount of air 

humidity (in parallel to temperature) in a city’s UCL as an example in order to compare the 

two types of vapor content measures and their usefulness. 

(2) Compilation of a short overview on the main results of earlier studies related to 

urban absolute moisture content of cities in mid-latitude climate regions (Köppen types C 

and D, Kottek et al. 2006). These studies are divided into two groups according to their scales. 

Studies in the first group are on urban-rural (larger scale) differences while the second group 

contains studies on humidity patterns and their intra-urban (smaller scale) differences. 

In the second part of our study we will show the results about the absolute moisture 

content of the urban canopy layer in Szeged, Hungary based on a rather long (three years) 

and detailed intra-urban dataset (see Unger et al. 2018). 

2. COMPARISON OF URBAN PATTERNS OF MEAN RELATIVE AND ABSOLUTE 

MOISTURE CONTENT 

In this section we compare the mean summer patterns of relative and absolute amount 

(vapor pressure) of air humidity as well as temperature. 

 
Fig. 1 Mean summer patterns of (a) relative humidity and (b) temperature  

in the urban area of Szeged, Hungary (June 2014 ‒ May 2017) 

As we mentioned in the previous section the urban RH pattern is the mirror image of 

the urban thermal field in the UCL, since the RH is the ratio of the vapor pressure and the 

vapor saturation pressure and the last one is the function of the temperature (T). Now we 

support this statement, not just based on a momentary situation, but taking the averages of a 

longer period (nine months) based on a three-year dataset of an urban meteorological station 

network from Szeged, Hungary (June 2014 ‒ May 2017). These averages of RH and T were 

calculated from ten-minute records of 22 stations situated on a study area of about 8 km × 

5.5 km. For the derivation of e averages we used the measured T and RH. For more details 

about the study area and data source see Unger et al. (2018). 
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The patterns of the three-summer 

RH and T averages have also mirror-like 

pictures (Fig. 1): dry/warm areas in the 

central parts and moist/cool areas in the 

western, northern and south-eastern parts 

of the study area. Additionally, the 

island-like shape of the patterns is clearly 

recognizable with highest T and lowest 

RH values in the middle then the 

decreasing Ts and increasing RHs toward 

the edges. Based on Fig. 1, we could 

reach the deceptive conclusion that the 

city core is drier than the rural areas.  

On the contrary, the distribution of 

vapor pressure in the UCL does not 

follow the thermal field and differs 

radically from the previous ones (Fig. 2). 

It does not show a regular shape, the 

pattern of e is mosaic-like: the driest and wettest areas are in the north-western and south-

eastern parts, respectively, but smaller dry and moist areas can be found in the city center, 

too. Furthermore, there are moist areas in the north and the south-eastern parts, while dry 

areas appear in the north-western, north-eastern and southern edges. This mosaic-like 

behavior of e implies that the moisture content distribution in UCL does not have any contact 

with the thermal pattern developed there but primarily depends on the smaller scale local 

moisture sources (irrigated parks, traffic, households, district heating plants, manufactories, 

etc.) and on the local conditions that inhibit or assist in air mixing promoting moisture 

accumulation or dilution. 

Comparing Figs. 1 and 2 it is clearly visible that the usage of RH in intra-urban 

analysis hides the real spatial distribution of moisture in the city. Precisely, on the basis of 

the mean patterns on Figs. 1 and 2 we can state that the investigation of urban RH patterns is 

not really useful since it does not give any valid information about the actual moisture content 

distribution of the urban air. It is more proper to turn our attention to the studies investigating 

the absolute measures (e, Td, Pv and q) of air moisture in urban environment. 

3. SHORT OVERVIEW ON STUDIES ABOUT ABSOLUTE MOISTURE CONTENT IN 

MID-LATITUDE CITIES 

In the following, starting with a short historical review, we look at the findings of the 

absolute moisture amount in the UCL based on studies in cities located at mid-latitudes. For 

the first time, Kremser (1908) stated that humidity changes in the city air. Based on his 

investigation of 14-year data series from Berlin (Germany) and its surroundings, e was 

smaller in the city with 0.2 mmHg on average. Lessmann and Zedler’s (1936) mobile 

measurement on a November day in 1935 gave rise to the first mapping of areal distribution 

of e with a largest difference of about 1.6 mmHg in Berlin. 

Subsequently, according to our knowledge, no progress was made until Chandler’s 

(1962) study in London (UK). Then the development has accelerated, both in terms of the 

 
Fig. 2. Mean summer pattern of vapor pressure in 

the urban area of Szeged, Hungary  

(June 2014 ‒ May 2017) 
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growing number of studies and in their versatility. It is not always possible to compare the 

urban effects identified in different cities as different humidity measures were utilized and 

insufficient information were given to convert them to a common measure (Oke et al. 2017).  

Below we describe the main characteristics and key findings of the studies related to 

urban-rural differences (first group) as well as to humidity patterns that is to intra-urban 

differences (second group). These distinction by scales is based on the number of available 

measurement sites as well as their spatial distribution and density in the investigated urban 

regions. 

3.1. Urban-rural differences 

 According to Oke et al. (2017) the urban-rural moisture differences in cities with mid-

latitude climates have the following common characteristics: 

 (i) “They are best displayed in ‘ideal’ (calm, clear) weather.” 

 (ii) “They are largest and spatially coherent at night but, during daytime they are 

complex and patchy.” 

(iii) “There is a seasonal shift in the diurnal pattern; in summer, urban air is less moist 

than in the countryside by day, but more moist at night and in winter a city is commonly more 

moist at all times.” 

The main features of studies in the first group are summarized briefly in Table 1. 

These studies are different regarding their measurement methods (fixed sites, mobile), the 

studied measures (e, Td, pv) and the length of the examined period (from one night to 33 

years). In addition we indicate which statements of Oke et al. (2017) are supported by the 

mentioned studies. 

Chandler (1962) states that the cellular morphology of cities may trap pockets of air 

(in case of favorable conditions for urban heat island development). In this situation the UCL 

is free from excessive mixing, thus the high daytime humidity will be maintained. It was 

proven by the distribution of mean Td values for about 23:30. In the central London Td was 

exceptionally high. 

According to Hage (1975) Edmonton (Canada) was found to be dry in the daytime but 

moist at night in all but especially in winter months. In winter pv is usually higher in the city 

on the whole day. Annual maxima in pv differences were found in March and August (moist) 

and in daytime in July (dry). 

The UCL air in Chicago (US) could be more or less humid than that in the surrounding 

rural areas (Ackerman 1987). This study also found diurnal and seasonal cycles. The average 

urban-rural differences were positive at night and negative only in the forenoon in late spring 

and in early summer afternoons. 

Lee (1991) found obvious seasonal and diurnal patterns of urban-rural humidity 

differences in case of London (UK). The mean monthly differences were between +0.9 and 

-0.3 hPa. The UCL is more humid than the rural area all day long in winter and spring while 

less humid only during daytime in summer. 

Szeged (Hungary) was found to be more humid than its surroundings during the whole 

year (Unger 1993, 1999). The minimum of increased humidity is at 01 h and its maximum is 

at 19 h in the summer months. This type of regular diurnal variation does not exist except in 

case of these summer situations. The humidity difference increases from January–February 

to August and then decreases until November–December. 

Holmer and Eliasson (1999) revealed that the urban moisture excess (UME) in 

Stockholm (Sweden) could develop from three different combinations of rural and urban 
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nocturnal e changes. This observation proves that different physical processes have effect on 

urban humidity, and these processes have different relationship with each other and the 

resulted e changes. They identified evaporation and condensation as an important factor for 

the development of UME but they also pointed out that the dry air advection caused by the 

urban heat island circulation could also modify the values. 

Table 1  Main characteristics of studies focused on urban-rural humidity differences in absolute terms 

in chronological order (fine – clear and calm weather conditions, e – vapor pressure, Td – dew point 

temperature, pv – absolute humidity), as well as their confirmation of one or more statements by Oke 

et al. (2017) 

Reference Measurement type Studied 

measure 

Number of events, 

time 

Confirm (i), 

(ii) or (iii) 

Chandler (1962) mobile traverse Td (°C) 1 night (October) (i) 

Hage (1975) urban-rural station pair pv (gm-3) 13 years (iii) 

Ackerman (1987) urban-rural station pair e, Td (mb, °C) 7 years (iii) 

Lee (1991) urban-rural station pair e (mb) 10 years (iii) 

Unger (1993, 1999) urban-rural station pair e (mb, hPa) 3 years - 

Holmer and Eliasson 
(1999) 

urban-rural station pair e (hPa) 53 fine summer 
nights 

- 

Unkašević et al. (2001) 1 urban, 2 suburb,  

1 rural stations 

e (hPa) 5 years (iii) 

Charciarek (2003) urban-rural station pair e (hPa) 5 years (iii) 

Mayer et al. (2003) 3 urban stations,  
mobile traverses 

e (hPa) August, January  (iii) 

Richards (2005) urban-rural station pair pv (gm-3) 24 days June-July  

(rain-free weather 
conditions biased 

toward fine and 

stable weather) 

(ii) 

Fortuniak et al. (2006) urban-rural station pair 

 

e (hPa) 6 years (ii), (iii) 

Sakakibara et al. 
(2006) 

mobile traverses 
 

e (hPa) 50 fine nights, 
22 cloudy nights,  

48 fine days  

(1 year) 

(i), (iii) 

Kuttler et al. (2007) urban-rural station pair 

 

e (hPa) 1 year (iii) 

Liu et al. (2009) urban-rural station pair e (hPa) 33 years (ii), (iii) 

Pongrácz et al. (2016) intra-district mobile 

traverses,  
1 suburban station 

Td (°C) 1 summer day  

 

Unkašević et al. (2001) manifested clear seasonal and diurnal patterns of urban-rural 

moisture differences in Belgrade (Serbia). They found humidity surplus in UCL compared to 

suburban and rural air at 07 and 21 h, autumn and winter, while in spring and summer the 

humidity had lower values in the UCL. They also clearly identified that at 14 h the UCL is 

drier in the whole year. 
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In case of Lodz (Poland) Charciarek (2003) found clear daily and seasonal cycle in e 

between urban and rural areas. In urban area the e is higher at nighttime, and in daytime only 

in the winter half-year. Maximal moisture surplus of urban area was measured after midnight 

in November and June, and in the afternoon and evening hours in November. 

Mayer et al. (2003) could not find any significant spatial variation of e in the winter 

months in Munich (Germany). However they found that the summer variation of e is 

characterized by higher monthly mean values for all of their three measurement sites and the 

inter-site differences are considerable. Mayer et al. (2003) revealed that the diurnal variability 

of mean e values has different amplitudes and times of occurrence of their extreme values. 

The readings of their car traverses before, during and after a clear night showed an obvious 

small-scale spatio-temporal variability of e as a combined dependence on time and pattern of 

urban land cover. 

In the case of Vancouver (Canada) there are no clear trend of urban humidity values, 

the urban-rural differences are between 1.7 and ‒3.3 gm-3 (Richards 2005). Median values 

for Δpv between urban and rural sites were all negative, however, there was some tendency in 

the urban moisture island between 0 and 04 h. 

Fortuniak et al. (2006) stated that urban-rural differences (Δe) in winter were usually 

around 1 hPa, but in summer they exceeded 5 hPa in extreme cases in Lodz (Poland). The 

highest negative differences occurred at night with a magnitude similar to the positive ones. 

They also found that it is very difficult to predict which type of humidity contrast will occur. 

According to their results the appearance of the highest positive Δe is at late night and the 

highest negative Δe is at early morning. 

Based on the measurements in six different cities in Japan, Sakakibara et al. (2006) 

found that urban e had usually lower value than in rural areas. Urban-rural e differences on 

days with clear and calm daily weather conditions were two times larger than on cloudy or 

calm nights. They found that the mean value of e differences in summer was nearly twice as 

large as in winter. They also revealed that the connection between mean e differences and 

settlement population size is logarithmic. 

Kuttler et al. (2007) revealed weak and intense UME during the year but the 

frequencies per month were different in Krefeld (Germany). A diurnal course of UME was 

also found only for summer. Weak or intense UME events usually occurred in the second 

half of the night. Most of these events had a duration of one hour, but in few occasions they 

found longer duration of weak and intense UME events up to 14 and 12 h, respectively.  

In case of Beijing (China) annual urban-rural e differences were high at night and low 

in the morning and afternoon (Liu et al. 2009). In winter, for the 08, 14 and 20 hours urban e 

was higher than rural area and lower in the other seasons. They stated that the difference 

usually reached its maximum in summer, on the other hand, at 02 hours the difference was 

marginal. Based on their measurements urban e was basically higher than the rural one. 

Pongrácz et al. (2016) revealed that Td values in the afternoon are usually lower than 

in the evening in Budapest (Hungary). The difference relative to the suburb station decreased 

from 3‒5°C (at about 14 h) to 1‒2°C (at about 21 h). 

3.2. Intra-urban patterns 

The following is an overview of the main results that have been achieved so far related 

to the absolute humidity patterns in the urban areas. So now we turn to the studies in the 

second group that are more related to our recent investigation in Szeged (see Unger et al. 

2018). The main features of studies of this group are summarized briefly in Table 2. 
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In case of Leicester (UK) Chandler (1967) proved that nighttime absolute humidity 

values were frequently higher in cities than in the rural areas nearby. There is also a 

remarkable conformity between the distribution of e and the extent and form of the city. 

Kopec (1973) revealed that in clear and calm weather situations the humidity in urban 

area of Chapel Hill (US) were higher at night as well as lower in the morning and afternoon 

compared to suburban and rural areas. Based on their measurements, the maximal differences 

and the most complex patterns were in late afternoon and in contrary, and there were the 

minimal differences and less complex spatial patterns at night. 

Table 2  Main characteristics of studies focused on urban humidity patterns in absolute terms in 

chronological order (e – vapor pressure, Td – dew point temperature, q – specific humidity, pv – 

absolute humidity) 

Reference Measurement type Studied 

measure 

Number of events, time 

Chandler (1967) mobile traverse e (mb) 3 nights (August) 

Kopec (1973) mobile traverse Td (°F) 6 (midnight, morning,  afternoon) 
(Sept., Oct.) 

Goldreich (1974, 

1999) 

mobile traverse q (gkg-1) 48 (morning, afternoon) (June, Dec.)  

Henry et al. 

(1985) 

mobile traverse Td (°C) 45 (morning,  afternoon, evening) 

(Aug. – Oct.) 

Moriwaki et al. 
(2013) 

21-station network pv (gm-3) 16 months (from July to next Oct.) 

Dou et al. (2015) 24-station urban + 20-station 

nonurban networks 

q (gkg-1) summer (5 years) 

 

According to Goldreich (1974, 1999) a distinct q island was found above the Central 

Business District in Johannesburg (South Africa) in summer and winter, especially at sunrise 

and in the early afternoon. The q island was most pronounced in the daytime in winter. 

Henry et al. (1985) stated that over undeveloped land the Td was higher in the 

morning and afternoon in Lawrence (US). In contrary, residential and educational-

institutional land use categories had negative correlation with Td values, while in the evening 

the significance of this relationship was minimal. 

In Matsuyama Plain (Japan) the UDI was identified in the daytime during favorable 

weather conditions (Moriwaki et al. 2013). They explained this phenomenon by the 

difference in water vapor fluxes at urban and rural sites. Their measurements showed obvious 

appearance of UDI in the morning and late afternoon, when the sea breeze and land breeze 

altered each other and the wind speed declined. Their study also revealed that UDI intensity 

was larger in summer than in winter. They explained their results with the small latent heat 

fluxes and strong NW monsoon effect in winter, which enhanced the mixing of humidity. 

In Beijing (China) the urban q values were lower than in the surrounding regions (Dou 

et al. 2015). Their measurements clearly illustrated that a multicenter distribution occurred 

and it was connected to the spatial distribution of urban impervious surfaces. According to 

their results these surfaces decrease the evapotranspiration and increase the runoff, thus 

decrease urban q levels. They also highlighted that the usually warmer urban boundary layer 

in the daytime is also more convective than the rural one, and it could increase upward 

moisture fluxes, resulting lower q in UCL than in the nearby rural areas. 
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4. CONCLUSIONS 

Our results help to draw the attention to the deceptive use of RH in urban climate 

studies. With the usage of absolute vapor characteristics (e.g. e, Td, pv, q) it is more likely 

possible to reveal the real moisture characteristics of urban areas. 

Our literature review revealed the contradictions and knowledge gaps in the field of 

urban moisture behavior. There are some basic tendencies in the urban-rural characteristics, 

as Oke et al. (2017) summarized, however the studies could not prove all of them in the same 

urban area. We also found some studies where none of these general tendencies could be 

find. In case of intra-urban patterns we could find only a few studies, and based on their 

results it is hard to outline any general characteristics. We can state that the highest moisture 

differences occur in late afternoon, the differences disappear at night and there are some 

connection between the most vegetated urban surfaces and moisture content.  

Essentially, the results of this systematic review show the necessity of a detailed 

analysis of the urban moisture patterns. This evaluation should use long data series in order 

to represent various weather situations, and it has to obtain readings from numerous different 

built-up areas of an urban environment in order to identify the possible factors what leads 

different moisture content in the basically same urban land use situations. In the second part 

of our study (Unger et al. 2018) we aim to present an analysis that is capable to accomplish 

these criteria. 
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ABSOLUTE MOISTURE CONTENT IN MID-LATITUDE URBAN CANOPY 

LAYER, PART 2: RESULTS FROM SZEGED, HUNGARY 
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Summary: This study gives a comprehensive picture on the air humidity observation and mapping in urban canopy 
layer in Szeged, Hungary, analyzing three-year long vapor pressure dataset (e) calculated from observations of a 22-

station urban network. The analysis was divided into two directions, namely the urban-rural and intra-urban ones 

where the latter was partly based on the local climate zone approach. (i) The general features of the annual and 
diurnal variations of urban-rural absolute humidity difference in cities with mid-latitude climates are also detectable 

in the case of Szeged. (ii) In the annual and seasonal e means there is no clear zone sequence that would follow the 

differences in the compactness or building height of the zones and even the built-up versus land cover distinction. 
(iii) The highest e values and their differences among stations appear in summer, while the lowest ones in winter 

and the values of transitional seasons are between them. In certain cases the intra-zone differences can exceed the 

inter-zone ones since the effect of microscale environment is essential. The decisive factors are the permeability of 
the surface and the vegetation cover. (iv) The diurnal course of the e pattern in normalized 4-hour time steps does 

not show a regular shape, the patterns are mosaic-like: in all time steps the driest and wettest areas are mainly in the 

north-western and south-eastern parts, respectively. 

Keywords: vapor pressure, urban network, long dataset, urban-rural, intra-urban, local climate zones 

1. INTRODUCTION 

The first part of our study dealt with the main results of earlier studies related to urban 

absolute moisture content of the urban canopy layer (UCL) in mid-latitude climate regions 

(see Unger et al. 2018). 

Our work in this second part presents a development in this research field compared 

to the previous ones as it is based on a rather long and spatio-temporally detailed intra-urban 

dataset from Szeged (Hungary). We analyze three-year long relative humidity and 

temperature data from 22 stations of an urban meteorological network, the installation of 

which was based on the surface classification scheme of Local Climate Zone (LCZ) system 

proposed recently by Stewart and Oke (2012). The applied dataset from the period of 2014–

2017 provides a reliable basis for examining the seasonal and annual features, as well as the 

diurnal dynamics of the urban absolute moisture content in and around the city. 

Based on the vapor pressure values calculated from relative humidity and temperature 

data of the urban network our analysis applies two approaches, namely the urban-rural and 

intra-urban ones: 

(1) In the first approach the annual and diurnal variations of mean urban-rural 

humidity differences are analyzed comparing them to the earlier results mentioned by Oke et 

al. (2017); 
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(2) During the second approach (a) the mean annual and seasonal humidity conditions 

of LCZs, (b) the mean diurnal variation of humidity of LCZs by seasons and (c) the mean 

diurnal variation of intra-urban humidity patterns in summer are evaluated.  

2. STUDY AREA, DATA AND METHODS 

Szeged is located in the south-eastern part of Hungary (46.25°N, 20.15°E) at 79 m 

a.s.l. on a flat terrain with a population of 162,000 within an urbanized area of about 40 km2. 

According to Kottek et al. (2006) it is in Köppen’s climatic region Cfb (warm temperate 

climate, no dry season, warm summer) with annual mean temperature of 10.9°C, sunshine 

duration of 2049 hours and annual amount of precipitation of 514 mm (1981–2010, OMSZ 

2015). Its urban area is characterized by a densely built midrise core, with openly spaced 

blocks of flats in the east-northern part of the city, as well as family homes and warehouses 

on the outskirts. The rural surroundings are mostly croplands (wheat, maze) with few 

scattered trees (Skarbit et al. 2017). 

 
Fig. 1  Geographical location of Szeged and local climate zone map of the study area with station 

sites of the urban meteorological network (marked by green crosses and digits referring to the zones) 

Within the framework of an EU project (URBAN-PATH 2018) an urban 

meteorological network with 24 stations was set up in Szeged representing different LCZs 

occurring in and around Szeged (Fig. 1). Two stations represent the rural area and 22 stations 

the different built-up areas (different LCZs) of the city (for more details see Unger et al. 

2015). The network provides air temperature (T in °C) and relative humidity (RH in %) 

datasets of high temporal and spatial resolution across various weather conditions. In this 

analysis two stations (5-1, D-1) were excluded from the original network because of technical 

reasons. The remaining 22 stations represent the built and land cover LCZs occurring in 

Szeged with one exception: LCZ G, as there is no measurement station near the small water 

bodies in the area. Thus, the data used in the present study relate to LCZs 2 (compact midrise), 
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3 (compact low-rise), 5 (open midrise), 6 (open low-rise), 8 (large low-rise), 9 (sparsely built) 

and D (low plants) (Fig. 1). 

As a first step, we calculated ten-minute averages of the measured 1-minute T and RH 

data of 22 stations from June 1, 2014 to May 31, 2017. In order to avoid the problem related 

to the effect of temperature on relative humidity (see Unger et al. 2018) and present the 

absolute moisture content of the urban canopy layer, the vapor pressure (e) values were 

calculated from the T and RH data, as a second step. During this procedure the vapor 

saturation pressure (es) was determined by: 

𝑒𝑠 = 𝐴 ∙ 10
(

𝑚∙𝑇
𝑇+𝑇𝑛

)
 

where A, m and Tn are constants depending of the state of water (Vaisala 2013). After, using 

the obtained ten-minute RH and es values the e was calculated by the following equation: 

𝑅𝐻 =
𝑒

𝑒𝑠

∙ 100% 

To compare the general humidity modifying effects of different LCZs in Szeged, 

monthly hourly means, monthly and seasonal means, as well as seasonal minimum and 

maximum means were used. In case of LCZs 2, 3 and D the averages derived from data of 

only one station, however, for LCZs 5, 6, 8 and 9 the average of data from several stations 

were used according to the size of these zones. 

We used data from selected stations to examine and compare the diurnal variation of 

seasonal averages by LCZs. In this analysis LCZs 2, 3 and D were represented by one station. 

Similarly, from the LCZ 8 we used also one station (8-2) because the other station has large 

data gaps in autumn, winter and spring. From the zones where this was possible more than 

one station was selected in order to reveal the intra-zone differences which may occur in e 

variations. These stations were 5-2 and 5-4 from LCZ 5, 6-1, 6-3 and 6-9 from LCZ 6 as well 

as 9-2 and 9-4 from LCZ 9. 

During the investigation of the temporal dynamics of the seasonal humidity patterns 

normalized time steps were applied in order to avoid the disturbing effect of different length 

of nights. It means that the time period from sunset to sunrise was divided into 12 parts and 

from sunrise to the next sunset also into 12 parts called them as ‘normalized hours’. The 

diurnal change of the seasonal e pattern was examined in 4-normalized-hour time steps: at 

sunrise, four and eight hours after sunrise as well as at sunset, four and eight hours after 

sunset, but only in summer as an example. The patterns were based on the above mentioned 

22 stations’ data using Kriging interpolation method with 100 m resolution. 

3. RESULTS AND DISCUSSION 

3.1. Annual and diurnal variations of mean urban-rural humidity differences 

In the first part of our study (Unger et al. 2018) we already mentioned three statements 

of Oke et al. (2017) about the common characteristics of the urban-rural moisture differences 

in cities with mid-latitude climates. To confirm their statement (iii) they cited an example 

from the results of Hage (1975) who evaluated a 13-year dataset of an urban-rural station pair 

in Edmonton (Canada) having continental climate with cold winters (Köppen type D, Kottek 

et al. 2006). Based on this example (see also their Fig. 9.4) they mentioned three features of 
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the annual and diurnal variations of 

urban-rural absolute humidity 

difference as typical ones for mid-

latitude cities. We now compare these 

features with those of Szeged using 

data also from a station pair based on 

our three-year dataset: station 2-1 

from the city center and station D-2 

represents the urban and rural 

conditions, respectively (Fig. 2). 

According to Oke et al. (2017) 

the “nocturnal absolute humidity 

difference is positive throughout the 

year with largest differences in 

August and the smallest in winter and 

spring” is the first feature. The e variation at night in Szeged is consistent with this feature 

except for the time of the maximum difference (September instead of August) because of the 

longer warm season. The second feature is the following: “Annual course of daytime 

difference changes from a deficit (city drier) in the warmer part of the year, to excess in the 

colder part.” Similarly, in our case the city is drier between March and July, then the urban-

rural daytime difference disappears and from September to February it changes its sign that 

is the rural areas are drier. The third feature, that is, “in winter there is a little diurnal change 

in the magnitude of the excess, but mid-summer there is a strong diurnal shift from a large 

daytime deficit to an equally large nocturnal excess” is also valid in Szeged with certain time 

deviations. Namely, the largest daytime deficit and the largest nocturnal excess occur in April 

and September, respectively. 

So the general features of the annual and diurnal variations of urban-rural absolute 

humidity difference in cities with mid-latitude climates are also detectable in the case of 

Szeged. 

3.2. Inter-zone comparison of mean annual and seasonal humidity conditions 

Based on the three-year dataset we calculated annual and seasonal means, as well as 

means of maximum and minimum vapor pressure by LCZ classes. Table 1 contains these e 

means, the maximum differences between the zones (Δemax) and information about the zones 

between which this maximum occurred. 

As expected the largest e means occur in summer while the smallest ones in winter 

(Table 1). In the transitional seasons the values are between them with a bit higher e means 

in autumn followed the warmest period of the year. The largest mean difference (1.3 hPa) 

appears in the daily minimum vapor pressure in summer as a difference between urban (LCZ 

3) and rural (LCZ D) areas while the smallest one (0.3 hPa) is in winter also between the e 

minimums. 

There is no clear zone sequence neither in the seasonal nor in the annual means that 

would follow the differences in the compactness or building height of the zones and even the 

built-up versus land cover distinction. Furthermore, there is no detectable order of sequence 

between the zones that would be valid for all seasons.  

 
Fig. 2  Annual and diurnal variations of mean urban-

rural (LCZ2‒D, 2-1↔D-2) vapor pressure difference in 

Szeged (June 2014 ‒ May 2017) 
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Table 1 Annual and seasonal vapor pressure (e, hPa) means by LCZs in Szeged, Hungary  

(June 2014 ‒ May 2017) 

Means (2014‒17) 
LCZ class 

Δemax 
max 

LCZX‒Y 2 3 5 6 8 9 D 

Summer 

es mean 17.9 17.5 17.8 18.1 17.8 18.1 17.2 0.9 6, 9 – D 

es mean max 20.2 19.8 20.1 20.7 20.1 21.0 20.4 1.2 6 – 3 

es mean min 15.7 15.2 15.5 15.6 15.5 15.3 14.4 1.3 3 – D 

Autumn 

ea mean 12.1 11.3 11.7 11.9 12.2 11.8 11.6 0.9 8 – 3 

ea mean max 13.9 13.0 13.6 13.9 14.1 13.9 13.8 1.1 8 – 3 

ea mean min 10.5 9.9 10.1 10.1 10.6 9.8 9.7 0.9 2 – D 

Winter 

ew mean 6.4 6.1 6.2 6.2 6.2 6.2 6.5 0.4 D – 3 

ew mean max 7.3 6.9 7.1 7.2 7.1 7.1 7.5 0.6 D – 3 

ew mean min 5.5 5.2 5.4 5.3 5.3 5.2 5.5 0.3 2, D – 3,9 

Spring 

esp mean 10.3 10.0 10.3 10.4 10.3 10.3 10.2 0.4 6– 3 

esp mean max 11.9 11.7 12.0 12.2 12.0 12.2 12.3 0.6 D – 3 

esp mean min 8.7 8.4 8.7 8.6 8.6 8.4 8.2 0.5 2, 5 – D 
Annual ean_mean 11.6 11.1 11.5 11.7 11.8 11.6 11.4 0.7 8 – 3 

3.3. Inter- and intra-zone comparison of mean diurnal course of humidity by seasons 

Figs. 3-5 present the seasonal daily variations of vapor pressure by LCZs based on 

normalized hourly means. In order to reveal any intra-LCZ deviations that may arise as a 

result of local circumstances we selected data from more than one station from the zones 

where this was possible (two, three and two stations from LCZ 5, 6 and 9, respectively). 

In summer the highest mean values approach the 20 hPa and their range is 4.3 hPa 

(15.4–19.7 hPa) during the day (Fig. 3). As expected, summer has the highest values and the 

largest range among the seasons. The smallest values are at sunrise, but the upward trend in 

the first part of the daytime breaks at about 4 hours after sunrise showing an early morning 

peak in almost all zones. This peak is the diurnal one except of station 9-2. Then a local 

decline can be observed until sunset. Then a slight increase appears, forming a second 

maximum in most cases (e.g. 5-4, 6-9, 9-4). In the case of remaining stations the decline 

continues until sunrise (e.g. 2-1, 3-1, 5-2). Appearance of the two peaks is caused by the daily 

dynamics of the urban boundary layer (UBL). At morning the insolation rapidly in-creasees 

the evapora-tion, later the near surface moisture is transported to the higher part of the UBL 

by convection. Near sunset when the UBL collapses due to the cessation of insolation this 

moisture of the higher 

part of the UBL 

descends near to the 

surface. 

The stations in 

the suburb (9-2, 6-9) 

have the largest values 

during the whole 24-

hour period while the 

smallest values can be 

found partly in the rural 

area (low plants, D-2) 

and partly, for surprise, 

in the housing estate 

(compact midrise, 5-2). 

 
Fig. 3  Daily variations of normalized hourly mean vapor pressure (e) 

in summer by LCZs in Szeged, Hungary (June 2014 ‒ May 2017) 
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Considering the 

intra-zone differences 

in LCZ 5 the hourly e 

means of station 5-2 are 

much lower (~2.5 hPa) 

during the whole day 

than the means of 

station 5-4. The reason 

of this deviation is the 

difference in the 

microscale 

environments, as 

station 5-2 is 

surrounded by mostly 

impervious surface, 

while the immediate environment of station 5-4 is dominated by vegetation, particularly by 

trees. 

In LCZ 6 stations 6-9 and 6-1 have almost equal values until 6 hours after sunrise, 

after that the maximal deviation between them is only 0.8 hPa. Station 6-3 has lower values 

than stations 6-9 and 6-1 with about 1.6 and 1.1 hPa in average, respectively. These 

differences are also caused by the vegetation nearby the stations since stations 6-1 and 6-9 

are surrounded by more dense vegetation than station 6-3.   

As far as LCZ 9 is concerned values of stations 9-2 and 9-4 are almost equal except 

in the period from sunrise+6 hours to sunset+4 hours with a maximum difference of 0.9 hPa 

at sunset. Station 9-4 is located near to dense vegetation and in its close proximity there is a 

partly swampy area (former river bed) thus the alteration of increased evaporation at this time 

causes the momentary higher values (Fig. 3). 

In winter, compared to summer, the e values are much lower (they are smaller than 

7.1 hPa) and the range is more narrow (1.6 hPa) (Fig. 4). The diurnal courses follow a fairly 

regular shape from a sunrise minimum to a sole peak between 10 hours after sunrise and 

sunset in all zones. It is remarkable that the two peaks of the daily cycle disappear. In this 

season the moistest zone is the rural one (D-2), this is followed by the outer zones (LCZs 9 

and 6, except station 6-3) with the compact and open midrise zones (stations 3-1, 5-4). The 

extended and compact low-rise zones (stations 8-2, 3-1) have smaller values, then, as a real 

exception, the station 6-3 in the north-western part of the city follows with its extra small 

values distinctly separating from the others. The absence of the two peaks indicates that the 

daily development and collapse of the UBL is not as dynamic as in summer. 

To examine the intra-zone differences two zones can be considered (LCZs 5 and 6) as 

in LCZ 9 there is minor deviation in the diurnal course between stations 9-2 and 9-4. In LCZs 

5 and 6 larger differences appear, which are 0.3–0.4 hPa and 0.4–0.9 hPa, respectively. In 

this season values of stations 6-1 and 6-3 are almost equal all of the hours. The appearing 

alteration is attributable to the differences in the impervious/pervious surfaces and vegetation 

in the microscale environments. The small variation inside zones highlights that in winter the 

micro scale differences of water availability and transpiration sources are not as important 

factors as in summer. The basic reason of this phenomenon is the more humid conditions 

(due to the less energy for evaporation) in this season (Fig. 4).  

 
Fig. 4  Daily variations of normalized hourly mean vapor pressure (e) 

in winter by LCZs in Szeged, Hungary (June 2014 ‒ May 2017) 
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In the transiti-

onal seasons the e 

values are a bit higher 

(1.5–2 hPa) in the 

autumn following the 

summer, as in the 

spring following the 

winter (Fig. 5). Their 

values are between 8.6 

and 13.4 hPa with the 

almost equal ranges 

(2.8 hPa and 3.2 hPa in 

spring and autumn, 

respectively). The high-

est daytime values in 

autumn (in LCZs 6 and 

9) have two peaks simi-

lar to the summer ones 

while the peaks in 

spring are less pronoun-

ced. The appearance of 

two peaks indicates that 

in the transition seasons 

the daily cycle of UBL 

is similar to the summer 

situation. 

The intra-zone 

variations are more 

noticeable compared to winter, since in the transition seasons the increase (or decrease) of 

energy income of the surface will lead to increase (or decrease) the humidity difference in 

various micro environments, and, additionally the availability of evaporable water is not 

equal within the whole urban area (even within a zone). 

In LCZ 5 the character of the difference between the two stations is similar to the 

summer one in both seasons but the deviation is smaller, it does not exceed 0.8 hPa and 1 

hPa in spring and autumn, respectively (Fig. 5). In case of LCZ 6 the daily courses of stations 

6-9 and 6-1 are more separated in spring, the maximum difference is of 0.5 hPa, while the 

values of station 6-3 are not much lower than the ones of station 6-1 with the difference 

ranging from 6-9 is 0.7–1.1 hPa. It can be assumed that the changing vegetation causes the 

different seasonal differences. Considering LCZ 9 there is minor deviation (˂ 0.1 hPa) in the 

diurnal course between stations 9-2 and 9-4 in autumn but in spring the deviation is a bit 

larger, mainly in the daylight hours (0.3–0.6 hPa) due to the more active vegetation life (Fig. 

5). 

3.4. Mean diurnal variation of intra-urban humidity patterns in summer 

According to the previous section the largest mean seasonal LCZ-difference in e 

appears in summer (4.3 hPa) which means that the most picturesque intra-urban deviations 

are expected in the summer urban patterns based on the dataset from 22 stations mentioned 

 
Fig. 5  Daily variations of normalized hourly mean vapor pressure (e) 

in spring (a) and in autumn (b) by LCZs in Szeged, Hungary  

(June 2014 ‒ May 2017) 
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in Section 2. Therefore, now we present the mean diurnal course of intra-urban humidity 

patterns only in summer as an example. 

 
Fig. 6  Diurnal course of the mean summer patterns of vapor pressure in the urban area of Szeged, 

Hungary in normalized 4-hour time steps (June 2014 ‒ May 2017)  

(station sites are marked by crosses) 
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Fig. 6 shows this diurnal course in normalized 4-hour time steps from sunrise to 4 

hours before the next sunrise. Generally, as in the mean summer case (see Fig. 2 in Unger et 

al. 2018), the distribution of UCL vapor pressure does not show a regular shape, the e pattern 

is mosaic-like: in all time steps the driest and wettest areas are in the north-western and south-

eastern parts, respectively. That is, there are no detectable trace of the urban dry island 

phenomenon. This result confirms the statement of Unger et al. (2018), namely the urban dry 

island is a phenomenon that is mostly caused by the areal change of temperature dependent 

relative humidity. 

As the dew formation on the gradually cooled surface during the night removed some 

of the moisture from the near-surface air the driest situation occurs at sunrise. At this time 

the lowest values (˂ 15.6 hPa) can be found in the north-western outskirts and north-eastern 

rural areas, while the highest ones (> 17.2 hPa) are in the city center as well as in the northern 

and south-eastern outskirts. 

Then, due to the intensive evaporation from the wet surface supported by the rising 

sun, the moisture content of the air increased drastically until 4 normalized hours after sunrise 

to reach the highest values in the 24-hour period (18–19.6 hPa). The areas with highest 

humidity appear in the eastern and south-western outskirts while the inner and north-western 

areas are a bit drier. 

Similar patterns can be observed after 8 hours and at sunset but with a bit lower air 

moisture content: the e values range between 17.4 and 19.2, as well as between 17.6 and 19.4 

hPa, respectively. 

After sunset, due to the increasingly cool surface, the moisture is partially extracted 

from the air resulting very similar patterns to the first one at sunrise, although their e values 

are not at the minimum: they ranges between 16.8 and 18.8 hPa, as well as between 16 and 

17.8 hPa, respectively (Fig. 6).  

4. CONCLUSIONS 

In this study the seasonal and annual, as well as the diurnal absolute moisture contents 

were analyzed in the urban canopy layer of Szeged, Hungary. The analysis consisted of two 

approaches, namely urban-rural and intra-urban ones, the latter was partly based on the local 

climate zone surface classification system. The general features of the annual and diurnal 

variations of urban-rural absolute humidity difference in Szeged are consistent with the 

features of mid-latitude cities. The nocturnal absolute humidity difference is positive 

throughout the year while the diurnal course changes its sign. The largest daytime deficit and 

nocturnal excess occur in April and in September, respectively. 

The largest e means occur in summer while the smallest ones in winter and in the 

transitional seasons the values are between them with a bit higher e means in autumn. There 

is no clear sequence in the annual and seasonal mean values of local climate zones that would 

follow the differences in the compactness or building height of the zones and even the built-

up versus land cover distinction. The intra-zone differences can be larger than the inter-zones. 

Consequently, the effects of the microscale environment of the measurement sites are crucial. 

The permeability of the surface and vegetation cover of the immediate surrounding can cause 

the different values of the stations within the same zones. The higher impervious surface 

indicate lower, while natural surfaces, mostly the proximity of trees indicate higher values. 
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The mean diurnal course of intra-urban humidity patterns in summer shows mosaic-

like ones. In all time steps the driest and wettest areas are mainly in the north-western and 

south-eastern parts, respectively. The driest situation occurs at sunrise and after that, due to 

the intensive evaporation from the wet surface supported by the rising sun, the moisture 

content of the air increases. The city core is drier from 4 hours after sunrise to 4 hours after 

sunset than the outskirts. After sunset, due to the cooling surface the e patterns are very 

similar to the first one at sunrise.  
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EVALUATION OF A WRF-LCZ SYSTEM IN SIMULATING URBAN EFFECTS 

UNDER NON-IDEAL SYNOPTIC PATTERNS 
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Summary: The modelling of meteorological variables under non-ideal (e.g. characterized by cyclonal activity) 
synoptic patterns is always challenging. It is particularly true, when the simulations are performed on local or 

neighborhood scale. In this study, the spatio-temporal distribution of urban heat island of Szeged was predicted by 

the Weather Research and Forecasting (WRF) model during two period with different meteorological background. 
During the first, a thick and permanent fog layer was located over the Carpathian Basin. The second one was 

dominated by a Mediterranean low that has caused high sums of precipitation. The comparison of modelled and 

observed variables suggested that the computed outputs showed robust consistency with the observations during the 
rainfall event. On the foggy days, however, WRF had difficulties to capture the daily variability of urban heat island 

intensity. It was due to the large underestimations of moisture circumstances. 

Keywords: urban heat island, Weather Research and Forecasting model, numerical modelling, local climate zones, 
modified static canopy parameters 

1. INTRODUCTION 

Urban dwellers have been experiencing an increasing amount of thermal load in 

expanding urbanized areas. The influence of specific surface geometry on energy budget 

results in major distinctions on local climate related to less-developed surroundings. One of 

the well-known manifestation of this phenomenon is the urban heat island (UHI), a 

temperature increment measured over areas with high rate of built-up. UHI has negative 

effects, for example, on economy (e.g. elevated energy consumption due to air conditioning 

in summer) (Vardoulakis et al. 2013), heath care (e.g. elevated cardiovascular morbidity and 

mortality) (Tan et al. 2010), and air quality (e.g. elevated tropospheric ozone production) 

(Fallmann et al. 2016). The projected tendencies of climate change triggers positively the 

modification of climatic parameters on urban scale, which draws even more attention to 

comprehensive monitoring of local environmental issues. 

In cities with temperate climate, UHI is particularly strong in the summertime nights 

under anticyclonic conditions. In case of high cloud fraction or precipitation, UHI becomes 

less pronounced or completely missing (Morris et al. 2001). At this time, thick clouds 

attenuate the incoming solar radiation and decrease the net solar energy at the surface. Less 

solar energy can store in urban fabrics, so that less energy is emitted in the night-time, which 

mitigates the temperature contrast between areas with different built-up ratio. The fog 

belongs to a special group of low-level clouds. This phenomenon develops directly over the 

surface and attenuates not only the shortwave part of radiation but also reflects the outgoing 

longwave radiation. If the fog layer is thick enough, the top of the fog behaves like an active 
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surface in terms of radiation. During fog events, the latent heat flux of surface energy budget 

dominates over the sensible flux and heat storage terms, and so UHI will be negligible. 

The elevated number of cloud condensation nuclei from anthropogenic activities leads 

to higher probability of cloud (and fog) formation and precipitation in urban areas (Oke 1987, 

Bokwa et al. 2018).The typical annual days of fog in Szeged is around 50-55, which is the 

consequence of the geographic location and the relatively high frequency of high-pressure 

synoptic patterns in autumn and winter months. Due to the projected effects of climate 

change, the frequency of high precipitation events will likely be increased in the forthcoming 

decades (Kis et al. 2017) over the Carpathian Basin. Furthermore, Péliné Németh et al. (2016) 

suggested that wind speed is projected to be decreased in autumn and winter months, which 

also triggers the physical mechanisms lead to fog formation. 

The Weather Research and Forecasting (WRF; Skamarock 2008) is a non-

hydrostatical, mesoscale numerical meteorological model that has been designed for both 

research and weather prediction purposes. In order to represent the physical processes at city 

scale, three urban schemes (Single Layer Urban Canopy Model (SLUCM) of Kusaka et al., 

2001, Kusaka and Kimura 2004, Building Effect Parameterization (BEP) of Martilli et al. 

2002, Building Energy Model (BEM) of Salamanca et al. 2010) are available for the 

simulations. The urban schemes have been coupled with the Noah land surface scheme 

(Tewari et al. 2004) through the land cover fraction parameter that partitions the grids to 

urban and non-urban parts. For non-urban parts, Noah calculates, for example, the heat fluxes 

and then adds them to the urban scheme where the urban fluxes have already been 

determined. The sum of the two sub-fluxes gives the final value of the fluxes. 

WRF has many options to take boundary layer processes and microphysics into 

account. One of the most important challenge in fog and precipitation predictions is to find 

the optimal combination of physical schemes (Tudor 2010). Beside the appropriate 

representation of physical processes, the selection of initial and boundary conditions is also 

crucial (Bergot et al. 2005). Several studies (e.g. Rémy and Bergot 2010, Gao et al. 2018) 

have successfully applied data assimilation techniques to enhance their fog forecast scores 

instead of using initial data from global models. It was also highlighted that the assimilation 

of near-surface temperature and specific humidity has the greatest influence on the 

simulations. Steeneveld et al. (2015) highlighted that the grid configurations also impact the 

quality of fog analysis and forecast. Most of the studies employed a horizontal resolution of 

5 km and bellow for the finest domain. 

Up to now, we only have experiences on the behavior of WRF in urban scale under 

calm weather conditions. Our earlier analyses have indicated that the coupled WRF-SLUCM 

with an adjusted urban parameter-set has been able predict most of the features of UHI. 

However, it is important to test our model under various synoptic patterns to be convinced of 

the strengths and shortcomings of the physical setting and static database. For this reason, in 

this study we intended to investigate the spatio-temporal variation of UHI during a foggy and 

rainy period. The simulated UHI was compared to the observations of a local urban climate 

monitoring system (Lelovics et al. 2014). This monitoring system consist 24 stations in 

Szeged representing different local climate zones (LCZs, Stewart and Oke 2012) in the city 

(Fig. 1). 
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2. STUDY AREA 

Szeged (46.25°N; 20.15°E) is located in the middle of Great Hungarian Plain, at 79 m 

a.s.l. The city with an administration area of 280 km2 is spread on both banks of the River 

Tisza (Fig. 1). Szeged has a population of 162,000 that makes it the third most populated city 

of Hungary. The annual mean temperature and precipitation is around 10–12°C and 500–600 

mm. During the year, Szeged is influenced by both oceanic and continental climate with 

different rates, but in general the latter is slightly dominant due to the Köppen–Geiger’s 

climate classification Cfb (warm temperate climate, no dry season, warm summer) (Kottek 

et al. 2006). 

 
Fig. 1  Spatial distribution of local climate zones over the study area  

(crosses mark the sites of urban climate monitoring system) 

The urbanized area consists of a well-developed and highly built-up city centre with 

commercials, educational and administrative buildings. In the inner residential belt, 

apartment houses and block of flats (mostly to the northwest) are found. On the right side of 

River Tisza, the residential area includes gardening houses with a larger amount green spaces. 

At the outermost parts with scattered cottages and logistics, the urban landscape is shifted 

gradually by the surrounding agricultural areas. 

3. BRIEF DESCRIPTION OF MODIFIED STATIC DATABASE 

The accurate representation of sophisticated urban geometry is essential in 

quantifying the physical processes within any urban area. Since each city is unique by its 

specific geographical, economical, and demographical features, it is required to create such 

static database that fits particularly well for the area of interest. To do so, several of the urban 

parameters (UCP) of SLUCM and BEP (Table 1) were tailored for Szeged by using three-

dimensional building database and remote sensing data. For taking the climate-modifying 

effect of surface built-up elements on local (i.e. few hundred meters to kilometer) scale into 
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account, a local climate zone-based land-use categorization was incorporated to WRF. By 

default, the model employs only three urban land-use categories, which largely simplifies the 

diversity of buildings. In contrast with the default case, LCZ classification allows ten urban 

classes to derive a more realistic land-use data. The classes are based on the height and 

compactness of buildings. Additionally, the LCZ system also includes further seven non-

urban categories (e.g. dense trees, bare soil, water) that describes the natural coverage of 

surface. 

Table 1  The modified SLUCM parameters according to the LCZ system 

UCP/LCZ name and 

designation 

LCZ 2 

Compact 

midrise 

LCZ 3 

Compact 

low-rise 

LCZ 5 

Open 

midrise 

LCZ 6 

Open 

low-rise 

LCZ 8 

Large 

low-rise 

LCZ 9 

Sparsely 

built 

Urban fraction 0.90 0.82 0.58 0.66 0.75 0.25 

Vegetation fraction 0.10 0.18 0.42 0.34 0.25 0.75 

Building height [m] 13.6 7.9 15.4 5.4 6.6 5.0 

Road and roof width [m] 5.1 4.3 5.3 3.2 5.5 2.9 

Surface albedo of road, roof, 

walls 
0.15 0.14 0.12 0.16 0.16 0.17 

Thermal conductivity of road 

[Jm-1s-1K-1] 
0.70 0.70 0.70 0.70 0.70 0.70 

Thermal conductivity of roof 
[Jm-1s-1K-1] 

1.04 1.01 1.20 1.01 1.24 1.01 

Thermal conductivity of walls 

[Jm-1s-1K-1] 
1.02 1.01 1.10 1.02 1.20 1.01 

Heat capacity of road 

[Jm-3K-1] 
1.95·106 1.98·106 1.95·106 1.98·106 1.94·106 1.98·106 

Heat capacity of roof 
[Jm-3K-1] 

1.97·106 1.97·106 1.97·106 1.97·106 1.97·106 1.97·106 

Heat capacity of walls 

[Jm-3K-1] 
1.63·106 1.62·106 1.72·106 1.62·106 1.86·106 1.61·106 

Emissivity of road 0.93 0.93 0.93 0.93 0.93 0.93 

Emissivity of roof 0.91 0.92 0.87 0.92 0.86 0.92 

Emissivity of walls 0.92 0.93 0.90 0.93 0.87 0.93 

 

There is an option in the model in which particular thermodynamic parameters (e.g. 

albedo, emissivity, heat conductivity) can be assigned to the predefined land-use types. 

During the compilation of such data, there is a lot of impediments to be resolved. For instance, 

it is necessary to have detailed information of road, wall, and roof materials. Another 

important feature is the age and condition (e.g. leaf litter and moss coverage, wetness) of 

these materials that can be determined with difficulty or neglected in most cases. In this study, 

we made an attempt to construct the dataset of most relevant thermodynamic-related SLUCM 

parameters for each LCZ. In the first step, it was assumed that the dominant built-up materials 

are concrete and asphalt for roads and pavements, brick for walls, and ceramic (representing 

tiles) and concrete for roofs. Then such small areas were allocated that are representative for 

the given LCZ. By knowing the relative occurrence of the materials in the LCZs, the final 

value of a thermodynamic parameter (e.g. heat capacity) can be calculated as follows: 
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𝐶𝐿𝐶𝑍𝑥
=  𝐶𝑎𝑠𝑝ℎ𝑎𝑙𝑡 ∙ 𝑀𝑎𝑠𝑝ℎ𝑎𝑙𝑡 + 𝐶𝑏𝑟𝑖𝑐𝑘 ∙ 𝑀𝑏𝑟𝑖𝑐𝑘 + 𝐶𝑐𝑒𝑟𝑎𝑚𝑖𝑐 ∙ 𝑀𝑐𝑒𝑟𝑎𝑚𝑖𝑐 + 𝐶𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 ∙ 𝑀𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒  

where CLCZx is the heat capacity of wall, road, or roof in a given LCZ in J m-3K-1 (x stands 

for building facets, i.e. wall, road, or roof) , Casphalt, Cbrick, Cconcrete, Cceramic is the standard heat 

capacity of asphalt, brick, concrete, and tile, respectively, in J m-3K-1 , Masphalt, Mbrick, Mconcrete, 

Mceramic is the relative fraction of asphalt, brick, concrete, and ceramic (tile) coverage. The 

standard values of the built-up materials are based on the physical look-up table of Wang and 

Kuo (2001). Overall, 14 SLUCM parameters (Table 1) were modified in each LCZ and 

applied to the simulations. 

3. MODEL CONFIGURATION 

The model integrations were performed with WRF model version 3.8.1. Three one-

way nested domains were employed (Fig. 2.), with a horizontal resolution of 13.5 km for D01 

(80×75 grids), 4.5 km for D02 (121×94), and 1.5 km for D03 (106×79).  

 
Fig. 2  Adopted domain configuration (the bottom map contains the LCZ classification for D03) 
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44 sigma vertical levels were prescribed, with higher density below 2 km for 

accounting even more precisely the turbulent and microphysical processes within the urban 

boundary layer. Centers for Environmental Prediction (NCEP) Global Forecast System 

(GFS) 0.25°×0.25° database provided the initial and boundary conditions, with a 3-h 

temporal resolution. Each simulation started at 00 UTC, one day before the period of interest, 

so that the first 24 hours was considered as spin-up time. In order to quantify the influence 

of urban geometry on local meteorological mechanisms, we have switched on the urban 

scheme of SLUCM. Further on, Noah land surface (sub)model (Tewari et al. 2004) was 

responsible for describing the surface-atmosphere interactions, RRTMG scheme (Iacono et 

al. 2008) for long- and shortwave radiation, revised MM5 scheme (Jiménez et al. 2012) for 

surface layer processes, BouLac scheme (Bougeault and Lacarrere 1989) for boundary layer 

processes, WSM-5 class scheme (Hong et al. 2004) for microphysics, and Kain-Fritsch 

scheme (Kain 2004) for cumulus convection. The Kain-Fritsch scheme was not considered 

for the innermost domain, since the model is able to explicitly simulate the cumulus 

convection at this mesh size. 

The investigation concentrated on those periods when the background synoptic 

pattern had remarkable forcing on urban effects. During the first period, an extended 

anticyclone were located over Eastern Europe and Hungary, with typical mean pressures 

around 1035 hPa. As a result of adequate moist content in the bottom troposphere and weak 

synoptic winds, thick fog layer formed over the Carpathian Basin and lasted many days of 

which two days (21 and 22 December, 2016) has been selected for the analysis. Our second 

case is quite different from the previous one: a strong Mediterranean low has swept across 

Hungary from southwest, causing remarkable precipitation sums and high wind speeds. The 

peak of the cyclone activity fell between 22 and 23 October, 2017, so the influence of 

precipitation on UHI was examined on these days. 

Table 2  Geographical information about the stations that are used for the evaluation 

No LCZ Station ID Latitude Longitude Elevation [m a.s.l.] 

1. LCZ 2 2-1 46.2549°N 20.1611°E 82 

2. LCZ 5 5-1 46.2643°N 20.1402°E 80 

3. LCZ 5 5-2 46.2749°N 20.1646°E 79 
4. LCZ 5 5-4 46.2818°N 20.1832°E 80 

5. LCZ 6 6-4 46.2650°N 20.1470°E 80 
6. LCZ 6 6-5 46.2386°N 20.1350°E 81 

7. LCZ 6 6-8 46.2666°N 20.1722°E 78 

8. LCZ 6 6-9 46.2590°N 20.1834°E 78 
9. LCZ 6 6-10 46.2775°N 20.1892°E 79 

10. LCZ 9 9-2 46.2863°N 20.1535°E 79 

11. LCZ 9 9-4 46.2458°N 20.1901°E 79 

12. LCZ D D-1 46.2562°N 20.0903°E 80 

 

The simulated near-surface air temperature (TnWRF) and relative humidity (for the fog 

case) was verified against the observations of urban climate monitoring system. From the 

modelled variables, we considered only those that are closest to the given monitoring site and 

characterized by same land-use category (i.e. they are in same LCZ). For example, station D-

1 was chosen to represent the rural measurements. The corresponding rural pair in the 

simulations is the value in the nearest grid to station D-1. By following this assumption, the 

mean UHI intensity in a given LCZ can be calculated as 
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∆𝑇𝐿𝐶𝑍𝑥
= ∑

1

𝑚

𝑚

𝑖=1

(𝑇𝑛𝑖
− 𝑇𝑛𝐿𝐶𝑍 𝐷

) 

where ΔTLCZx is the modelled or observed UHI intensity in a given LCZ, Tn is the modelled 

or observed near-surface temperature in a given LCZ, Tn_LCZ D  is the modelled or observed 

rural near-surface temperature, m is the number of stations in a given LCZ. Precipitation 

measurements occur solely at station D-1, therefore the verification of precipitation sums was 

performed only for the rural site. Towards an efficient and comprehensive comparison, the 

sampling frequency of outputs was set to 10 minutes. Some of the stations indicated missing 

values during one of the periods, thus they were omitted from the analysis. The fundamental 

metadata of the remaining stations are summarized in Table 2. 

4. RESULTS AND DISCUSSION 

4.1. “Fog case” 

4.2.1. Evaluation of near-surface temperature 

As it can be seen in Fig. 3, the observed near-surface air temperature (TnOBS) remains 

below the freezing point in all LCZs during the entire simulation period. An additional 

common feature was the almost uniform ranges of TnOBS between -0.5°C and -2.5°C, with 

the highest peaks after 12 UTC on 22 December. In rural LCZ D, however, the mean TnOBS 

was 1-1.5°C lower than in urban ones. Higher temperatures within the city could be the 

consequence of such anthropogenic activities as transportation or heating of buildings. Due 

to the thick fog layer and lack of insolation, the diverse urban geometry has low impact on 

local meteorology, therefore only a slight inter-LCZ variability exists. If we consider TnOBS 

on the two days, it is clearly seen that the daytime warming stage was utterly disappeared. 

Usually, the fog intensifies with inconstant speed and depends on the availability of moist 

supply. The measured time-series of Tn suggest that the increase of fog thickness could be 

permanent and conserves TnOBS at a given level. In order to confirm this, the evolution of 

moist-related variables (e.g. relative humidity) should also be taken into consideration. 

The modelled near-surface temperature (TnWRF) that varies between -4°C and 4°C 

shows quite different patterns from the observations in each LCZ. On average, TnWRF 

overestimates TnOBS, especially during the day (Fig. 3). The daytime positive biases peaks 

around 12 UTC, with a magnitude of 5–6°C and minor distinctions between the first and 

second day. TnWRF at night can be typified with 2 stages. The first stage covers the first 5-6 

hours when the warm biases decrease in each LCZ, and what is more in LCZ 5 and LCZ 9 

the overestimation shifts to a slight underestimations of about 0.5°C. By comparing the static 

SLUCM parameters and TnWRF in different LCZs, it is revealed that the cooling rate is 

proportional to the built-up rates of LCZs. In LCZ 2 with a mean urban fraction of 90%, the 

maximum of TnWRF is about 3°C higher than in LCZ 9 with a mean urban fraction of 25%. 

During the second stage, covers the remaining night-time hours of the simulation period, the 

overestimations are even more obvious, although the aforementioned cooling potential is less 

significant. Then, the discrepancies in urban fractions are not a major factor in governing the 

nocturnal TnWRF as earlier. Consequently, the daily temperature ranges on the second day are 

much (around 4°C) lower. A potential explanation for this may be that the emission of 
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longwave radiation is lower as a result of higher air moisture content and higher low-level 

cloud coverage. This also emphasizes that the overview of wetness conditions is crucial in 

this case. 

 

Fig. 3  Temporal variation of observed and modelled near-surface air temperature in each LCZ 

4.1.2. Evaluation of UHI 

The observed urban heat island intensity (ΔTOBS) ranges within a narrow threshold 

between 0°C and 1°C (Fig. 4), which means tiny fluctuations either in space and time. A 

small decrease of 0.5°C, however, occurs on the second day because of the decreasing of 

TnOBS around noon. Contrarily, the modelled intensity (ΔTWRF) shows much higher spatio-

temporal variability, with a range between -1°C and 4°C. Overall, ΔTOBS is over-predicted, 

particularly in the night-time, with even 3–4°C. The largest uncertainties arise in LCZs 2 and 

5 at 06 UTC, when the increasing of Tn is simulated to be faster in urban grids related to the 

rural counterpart. The positive biases in LCZs 5 and 9, however, decrease at this time due to 

the underestimation of TnWRF. 

In the daytime, particularly from 10 to 14 UTC, ΔTWRF shows relatively good 

agreement with observations (Fig. 4). On the second day, however, slight underestimations 
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of daytime ΔTOBS evolves in each LCZ. Beside the similarities, there are several differences 

that must be pointed out. In LCZs 2 and 6, for example, the strong UHI that predicted from 

15 to 08 UTC stays at a constant level of 2.5–3.5°C. On the other hand, UHI in LCZ 5 has 

higher variability with a weak decrease after 01 UTC. When UHI is modelled to be positive, 

the mean magnitude is the lowest in LCZ 9, which is the result of low impervious and high 

pervious surface coverage. 

 

Fig. 4  Temporal variation of observed and modelled urban heat island intensity (ΔT) in each LCZ 

Fig. 5 illustrates the spatial distribution of ΔTWRF over the study area. As it is expected, 

ΔTWRF at 12 UTC is around 0-1°C on both days, with minimal areal differences. Robust heat 

island, with more pronounced spatial variability, is simulated at 04 UTC (representing UHI 

before sunrise). On the first day of the period, the negative ΔTWRF is limited to the northern 

and south-western periphery of Szeged, with values around 2.5°C. On the following day, at 

the same date, ΔTWRF expands to the entire city. The hottest spots are located over the 

downtown (LCZs 2 and 5) and the northern parts with LCZ 6. The spatial distribution at 20 

UTC (representing UHI after sunset) occurs analogously, with intensities over 2.5°C. When 

the two dates are compared, it can be seen that ΔTWRF seems to be larger on 21 December. 

LCZs in the middle and the north-western parts that can be considered as a transition zone 

from urban to rural landscape are characterized by ΔTWRF of 2°C and below. In parallel, the 

values are mostly under 0°C in the adjacent rural areas, showing a cooling to the previous 

day. Indeed, the nocturnal TnWRF in LCZ D increases less compared to the urban LCZs, 

therefore the near-surface air layers in other rural grids can also cool below the mean of urban 

values. This contrast in cooling potential can lead to the relative difference in ΔTWRF between 

the days at 20 UTC. 



Molnár G, Gál T, Gyöngyösi AZ 

66 

 

Fig. 5  Spatial distribution of modelled urban heat island intensity (ΔT) over the Szeged and the 

surroundings on six distinct dates 

4.1.3. Evaluation of relative humidity and the analysis of net shortwave radiation flux 

The presence of fog and mist in WRF simulations is further analysed on the temporal 

variability of relative humidity and net surface shortwave radiation flux (Fig. 6). Modelled 

shortwave flux has substantial daily variation with peaks around 300 Wm-2 at local noon (11 

UTC). This flux is similar to the climatic mean value of December, referring to low amount 

of cloudiness. In LCZ D, the flux is about 25 Wm-2 lower than in the grid of station 5-1. It is 

may be the consequence of less transparent air column for solar radiation, due to higher 

absolute moisture content. 
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One of the major criterion for 

fog is that the relative humidity must 

be over 80%. By following this 

definition, the observations imply fog 

formation around the rural measu-

rement site during the whole simula-

tion period. The same is valid for 

station 5-1, however, the fog layer is 

likely to be broken up in the middle of 

the first day. The time-series of 

modelled relative humidity in each 

LCZ does not show reasonable 

agreement with the observations. The 

uncertainties as high value as 30–35% 

in the daytime. During the other stages 

of the era, the predicted relative 

humidity also remains under the 

observed standards. In the rural LCZ, 

the relative humidity was computed to 

be higher by 10%. At nights, the 

differences grows further, particularly from 15 to 10 UTC. Considering the criterion above, 

fog is predicted only for a small fraction of the simulation time, and exclusively for the rural 

grids.  

The under-representation of moist content can be the reason why the model captures 

most of the features of Tn (and so ΔT) with relatively high biases. The well-balanced course 

of TnOBS time-series are affected largely by the fog. Due to negligible solar radiation, the 

surface-induced thermal differences cannot be evolved. In the simulations, controversially, 

the overestimated insolation is able to store in urban fabrics in the daytime and being re-

emitted to the overlying atmosphere in the night-time, creating significant daily variations of 

temperature. 

Without proper representation of fog in initial and boundary conditions, the 

reconstruction of UHI under such synoptic patterns is quite challenging. A possible solution 

can be is the application of multiple models for initial conditions to find the most suitable 

option for the corresponding modelling purpose. For our case (and in many others), the 

assimilation of local measurement could give the “best guess” to derive the initial 

meteorological field. 

4.2. “Precipitation case” 

4.2.1. Evaluation of near-surface temperature 

During the days with remarkable precipitation, TnOBS fluctuates between 10°C and 

18°C (Fig. 7). At the early stage of the first day, when the cyclone does not modify the 

progress of urban effect, a regular daily pattern of TnOBS develops, with minima (maxima) 

around 06 UTC (14 UTC). On the second day, however, a gradual cooling occurred due to 

lack of insolation, moderate rainfall, and cold advection. WRF captures well the transition of 

TnOBS between the days with distinct meteorological background. Focusing on the first day, 

 
Fig. 6  Temporal variability of observed (solid lines) 

and modelled (dotted lines) relative humidity  

in LCZ D (green) and station 5-1 (red). The dashed 

lines represent the temporal variability of surface 

irradiance of solar radiation in LCZ D (green) and 

station 5-1 (red) 
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the minimum of TnWRF is simulated properly in LCZs 2 and 5 but with different signals 

elsewhere: as against to the cold biases in LCZ D, warm biases evolves in LCZs 6 and 9. The 

daytime values are consistently overestimated by 1°C to 2°C in each LCZ. In many aspects, 

TnWRF indicates a better agreement with the observations on the second day, with absolute 

biases under 1°C. From 18 UTC, a slight warming appears in all LCZs, which is not 

underpinned by the observations and can be linked to the misinterpretation of rainfall length. 

 
Fig. 7  Temporal variation of observed and modelled near-surface air temperature in each LCZ 

Fig. 8 confirms that the weather conditions were not favoured for the development of 

urban heat island; ΔTOBS scatters between -1°C and 1°C and becomes invariant as the 

precipitation event begins. The largest uncertainties of ΔTWRF arises at the first hours of the 

simulation, when the rain has not started to fall. After sunset of 22 October, there are 

overestimations of 2–3°C, particularly in LCZs 6 and 9. The negative biases, predicted in the 

middle of the day, are considerably in those LCZs where ΔT is observed to be higher during 

this period. As it is discussed earlier, this general under-prediction stems from lower 

modelled cloud coverage (higher modelled incoming solar radiation) and so higher TnWRF.  

In Fig. 9 the thermal differences of ΔTWRF over urban and non-urban parts of the study 

area are illustrated. The shifting in the synoptic situation and its influence on the shape of 
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urban heat island is captured well by WRF. In the dawn of the first day (04 UTC), a well-

pronounced UHI is simulated, with intensities around 2°C. As it is expected, no considerable 

difference in ΔTWRF is depicted during the day. After sunset, the urban effect amplifies again, 

but with less magnitude due to the arrival of cyclonic system. As the time goes by, ΔTWRF 

increases to 0°C and UHI is entirely blurred. In other words, the inhomogeneity of surface 

geometry has slightly visible and sensible impact on the distribution of local meteorological 

variables. Without insolation, the singe income term of energy budget is the anthropogenic 

heat. In autumn, the most common form of heat release from human activity is the heating of 

buildings. Under such weather conditions, the urban boundary layer is well-mixed, so this 

additional energy surplus cannot be cumulated over areas with higher built-up and does not 

increase of urban-rural thermal contrast. 

 

Fig. 8  Temporal variation of observed and modelled urban heat island intensity (ΔT) in each LCZ 

Fig. 10 shows the evolution of precipitation field over Hungary during the second day 

of the simulation period. The largest amount of precipitation is modelled around 00 UTC, 

with hourly sums around 5 mm. As the centre of the cyclone (mean see level pressure around 

1004 hPa) approaches Szeged (around 12-13 UTC), the rainfall intensity decreases to 2–3 

mm, however, still remarkable moist convergence is predicted at the western side of the 

centre. The dissipation of the system starts in the late afternoon, the hourly sums stays below 

1 mm at 20 UTC. Later, the rainfall ceases according to the simulations. 

The predicted hourly precipitation sums is evaluated through the measured values at 

station D-1 (Fig. 11). Under the evaluation process, three types of biases are introduced. The 

“standard” bias means the modelled bias (observed value subtracted from the modelled one) 

when the precipitation at a given hour is included both in the observations and outputs. 

BiasCOND1 (always positive) refers to the case when the precipitation is modelled but not 

measured. BiasCOND2 (always negative) refers to the case when the precipitation is measured 

but not modelled. Following this assumption, it is revealed that the rainfall in WRF is 
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simulated first at 18 UTC (on 22 October), but it is not supported by the observations. In real, 

the precipitation starts to fall in the next hour, which is not caught by WRF. In the hours 

afterwards, the hourly rainfall sums is mostly underestimated with about 1–2 mm. At 22 UTC 

a significant positive bias of 7 mm occurs. From 05 to 17 UTC, hourly sums over 1.5 mm is 

predicted, without the confirmation of the observations. At the end of the simulation period 

slight underestimations are illustrated. This can be the reason why Tn is simulated to be higher 

in contrast with TnOBS. 

 

Fig. 9  Spatial distribution of modelled urban heat island intensity (ΔT) over the Szeged and the 

surroundings on six distinct dates 
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Fig. 10  Spatial distribution of modelled hourly sums of precipitation and mean see level pressure 

over Hungary on three distinct dates 

5. CONCLUSIONS 

In this study, the urban heat island effect was simulated with WRF under non-ideal 

(i.e. fog and precipitation) meteorological conditions. It was analysed that whether the model 

is able to predict the influence of strong synoptic forcing on the evolution of thermal and 

moisture-related variables in the complex urban canopy 

layer. The modelled outputs of near-surface air 

temperature, urban heat island intensity, relative 

humidity, and precipitation sums was evaluated against 

the observations of our urban climate monitoring 

system. 

During the first simulation period, thick fog 

layer covered the Carpathian Basin. Due to lack of 

insolation, the observed near-surface air temperatures 

had low temporal variation and ranged -3°C and 0°C. 

On the other hand, the predicted diurnal variabilities 

exceeded 5°C. The overestimations in the daytime, 

however, slightly decreased on the second day. At 

nights, the near-surface air temperature was simulated 

 
Fig. 11  Comparison of observed 

and modelled hourly precipitation 

sums at station D-1 
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better on the first day, with absolute biases lower than 1.5°C. According to the observations, 

only a weak urban effect was created under this synoptic pattern. As a result of the higher 

predicted temperatures in each urban LCZ related to the rural LCZ D, the urban heat island 

intensity was found to be 1.5-2°C higher in the simulations. Spatially, UHI has developed 

with the highest simulated magnitudes over areas classified as LCZs 2 and 5. LCZs with 

lower artificial surface coverage (e.g. LCZs 9 and D) were characterized by less pronounced 

urban effect. The relatively errors of WRF can be contributed to the under-prediction of air 

moisture content. While the observed relative humidity was around 80%, the observed values 

remained below this threshold, in fact, during the entire period. It means that the fog was 

almost totally excluded from the simulations, which has caused the remarkable variations of 

temperature and heat island intensity. 

The second simulation period coincided with the pass of a Mediterranean low over 

Szeged, characterized by significant rainfall. It can be concluded that WRF has performed 

much better in terms of all variables. The largest uncertainties of near-surface temperature 

evolved on the first day when the precipitation event has not started yet. Then, the nocturnal 

values were caught adequately, although some underestimations of 1.5–2°C occurred during 

the daytime. On the next day, when the cyclonal system had more effect on the local 

meteorology, WRF predicted reasonably better the overall pattern of near-surface 

temperature in all LCZs. The drastic shift in urban effect between the two days of this period 

was also predicted with small biases. Due to intense rainfall, the simulated heat island 

intensity decreased 2–2.5°C in the downtown and stagnated around 0°C during the entire 

day. The evaluation of modelled hourly sums of precipitation suggested that pass of the rain 

field was captured appropriately in most of its aspects. Overall, more precipitation was 

simulated as it may be expected from the observations. The largest positive biases were 

created on the second day from 04 to 17 UTC. Meanwhile, the rainfall was modelled but not 

recorded by the measurements. This mistake has not caused significant biases in temperature, 

since the attenuation of solar radiation could be equal both in WRF and the observations. 

As a conclusion, during the precipitation case, the model with our settings modelled 

the urban effect with relatively good agreement with the observations. The simulation of the 

synoptic pattern with thick fog layer, however, were followed by significant uncertainties. 

The evaluation of relative humidity in an urban and rural station confirmed that the existence 

of fog or mist was not reproduced by the model at all. The forecast of fog is one of the most 

difficult modelling challenge. Since this phenomenon acts typically on local scale, the 

horizontal resolution of grid and the selection of parameterization schemes is particularly 

crucial. If the global model that provides the initial and boundary conditions for WRF is not 

able to represent some of the important feature of the atmosphere over the region of interest, 

the simulation of WRF can also be inaccurate. To overcome this problem, it is advisable to 

use more model for reproducing the initial meteorological field and find which of those the 

best choice under a specific synoptic situation is. Moreover, the assimilation of local 

measurements can also be a reliable solution. For this reason, we aim to execute a 3-

dimensional variational data assimilation of near-surface temperature and relative humidity, 

measured by our urban climate monitoring system. Hopefully, it can contribute to a better 

representation of the initial meteorological field, particularly under strong external synoptic 

forcing. 
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